HD-GCN 项目使用教程
2024-09-18 22:34:15作者:柏廷章Berta
1. 项目目录结构及介绍
HD-GCN 项目的目录结构如下:
HD-GCN/
├── config/
│ ├── ntu120-cross-subject/
│ ├── ntu60-cross-subject/
│ └── ...
├── data/
│ ├── NW-UCLA/
│ ├── ntu/
│ └── ...
├── feeders/
├── figures/
├── graph/
├── model/
├── torchlight/
├── LICENSE
├── README.md
├── ensemble.py
├── main.py
├── run_ensemble.sh
└── ...
目录结构介绍
- config/: 包含项目的配置文件,根据不同的数据集和任务类型进行分类。
ntu120-cross-subject/: 针对 NTU RGB+D 120 数据集的交叉主题配置文件。ntu60-cross-subject/: 针对 NTU RGB+D 60 数据集的交叉主题配置文件。
- data/: 存放数据集的目录,包括 NTU RGB+D 60、NTU RGB+D 120 和 NW-UCLA 数据集。
NW-UCLA/: NW-UCLA 数据集的存放目录。ntu/: NTU RGB+D 数据集的存放目录。
- feeders/: 数据加载和预处理的脚本。
- figures/: 存放项目中使用的图表和图片。
- graph/: 与图相关的脚本和工具。
- model/: 存放模型的定义和实现。
- torchlight/: 自定义的 PyTorch 工具和实用程序。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- ensemble.py: 用于模型集成和结果合并的脚本。
- main.py: 项目的启动文件,用于训练和测试模型。
- run_ensemble.sh: 用于运行模型集成任务的 shell 脚本。
2. 项目的启动文件介绍
main.py
main.py 是 HD-GCN 项目的主要启动文件,负责模型的训练和测试。以下是该文件的主要功能和使用方法:
主要功能
- 训练模型: 通过指定配置文件和设备,启动模型的训练过程。
- 测试模型: 加载预训练模型并进行测试,生成测试结果。
使用方法
python main.py --config /path/to/config.yaml --device 0
--config: 指定配置文件的路径。--device: 指定使用的 GPU 设备编号。
3. 项目的配置文件介绍
配置文件结构
配置文件通常位于 config/ 目录下,根据不同的数据集和任务类型进行分类。以下是一个典型的配置文件结构示例:
# 示例配置文件
dataset: NTU-RGB+D 60
cross_subject: True
model:
type: HD-GCN
parameters:
...
training:
batch_size: 32
epochs: 100
learning_rate: 0.001
...
配置文件参数说明
- dataset: 指定使用的数据集,如
NTU-RGB+D 60或NTU-RGB+D 120。 - cross_subject: 是否使用交叉主题设置。
- model: 定义模型的类型和参数。
type: 模型类型,如HD-GCN。parameters: 模型的具体参数设置。
- training: 训练相关的参数设置。
batch_size: 批处理大小。epochs: 训练轮数。learning_rate: 学习率。
通过配置文件,用户可以灵活地调整模型的训练和测试参数,以适应不同的任务需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178