HD-GCN:基于层次分解图卷积网络的骨架动作识别
2024-09-17 05:16:54作者:郜逊炳
项目介绍
HD-GCN(Hierarchically Decomposed Graph Convolutional Networks)是一个专为骨架动作识别设计的先进开源项目,已在ICCV 2023上正式发布。该项目基于层次分解图卷积网络架构,通过引入新颖的层次分解图(HD-Graph)和注意力引导层次聚合(A-HA)模块,显著提升了骨架动作识别的准确性。HD-GCN在NTU-RGB+D 60、NTU-RGB+D 120和Northwestern-UCLA等多个大型数据集上均取得了最先进的性能。
项目技术分析
HD-GCN的核心技术在于其层次分解图卷积网络架构。该架构通过将每个关节节点分解为多个集合,提取出主要的结构相邻和远距离边,从而构建包含这些边的HD-Graph。此外,A-HA模块通过注意力机制突出显示HD-Graph中的主导层次边集,进一步增强了模型的识别能力。HD-GCN还采用了六路集成方法,仅使用关节和骨骼流,无需任何运动流,从而简化了模型的复杂性。
项目及技术应用场景
HD-GCN在多个领域具有广泛的应用前景:
- 智能监控:通过识别和分析人体动作,实现对异常行为的实时监控和预警。
- 虚拟现实与增强现实:用于动作捕捉和实时动作识别,提升用户体验。
- 医疗康复:辅助医生评估患者的康复进度,提供个性化的康复方案。
- 体育分析:用于运动员的动作分析和训练指导,提升运动表现。
项目特点
- 高精度识别:在多个大型数据集上均取得了最先进的性能,证明了其高精度的动作识别能力。
- 层次分解架构:通过层次分解图卷积网络,有效提取和利用骨架数据中的关键信息。
- 注意力机制:引入A-HA模块,通过注意力机制增强模型的识别能力。
- 六路集成方法:简化了模型的复杂性,同时保持了高识别精度。
- 开源易用:提供详细的文档和预训练模型,方便开发者快速上手和应用。
HD-GCN不仅在技术上具有创新性,而且在实际应用中展现了巨大的潜力。无论你是研究者、开发者还是行业从业者,HD-GCN都值得你深入探索和应用。快来体验HD-GCN带来的高效、精准的骨架动作识别吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
389
Ascend Extension for PyTorch
Python
248
284
暂无简介
Dart
701
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
274
329
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
280
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871