HD-GCN 开源项目使用教程
2024-09-14 19:18:16作者:彭桢灵Jeremy
项目介绍
HD-GCN(Hierarchically Decomposed Graph Convolutional Networks)是一个用于基于骨架的动作识别的开源项目。该项目在ICCV 2023上被提出,旨在通过层次分解的图卷积网络(HD-GCN)架构来提高动作识别的性能。HD-GCN通过将每个关节节点分解为多个集合,提取主要的结构相邻和远距离边,并使用这些边来构建一个包含这些边的HD-Graph。此外,项目还引入了注意力引导的层次聚合(A-HA)模块,以突出HD-Graph的主导层次边集。
项目快速启动
环境准备
首先,确保你的环境中安装了以下依赖:
- Python >= 3.6
- PyTorch >= 1.10.0
- PyYAML == 5.4.1
- torchpack == 0.2.2
- matplotlib
- einops
- sklearn
- tqdm
- tensorboardX
- h5py
你可以使用以下命令安装这些依赖:
pip install -e torchlight
数据准备
下载所需的三个数据集:
- NTU RGB+D 60 Skeleton
- NTU RGB+D 120 Skeleton
- NW-UCLA
将下载的数据集解压到指定目录:
/data/nturgbd_raw
数据处理
生成NTU RGB+D 60或NTU RGB+D 120数据集:
cd /data/ntu
# 获取每个表演者的骨架数据
python get_raw_skes_data.py
# 去除不良骨架
python get_raw_denoised_data.py
# 将骨架转换到第一帧的中心
python seq_transformation.py
训练与测试
训练
以NTU RGB+D 60交叉主体为例,训练HD-GCN(joint CoM 1):
python main.py --config /config/nturgbd60-cross-subject/joint_com_1.yaml --device 0
测试
测试已训练的模型:
python main.py --config <work_dir>/config.yaml --work-dir <work_dir> --phase test --save-score True --weights <work_dir>/xxx.pt --device 0
应用案例和最佳实践
HD-GCN在多个大型数据集上展示了其优越的性能,包括NTU-RGB+D 60、NTU-RGB+D 120和Northwestern-UCLA。通过六种方式的集成方法,HD-GCN在没有任何运动流的情况下,仅使用关节和骨骼流,就实现了最先进的性能。
最佳实践
- 数据预处理:确保数据预处理步骤正确执行,以避免不良数据对模型性能的影响。
- 模型训练:使用适当的配置文件进行模型训练,并监控训练过程中的损失和准确率。
- 模型测试:在测试阶段,确保使用与训练阶段相同的配置,以获得一致的结果。
典型生态项目
HD-GCN项目基于多个开源项目构建,包括2s-AGCN和CTR-GCN。数据处理部分借鉴了SGN和HCN项目。这些项目共同构成了一个丰富的生态系统,为基于骨架的动作识别提供了强大的工具和方法。
相关项目
- 2s-AGCN:双流自适应图卷积网络,用于动作识别。
- CTR-GCN:基于图卷积网络的动作识别模型。
- SGN:基于骨架的动作识别模型。
- HCN:基于层次卷积网络的动作识别模型。
通过结合这些项目,HD-GCN能够更好地理解和识别复杂的动作模式,从而在多个数据集上取得优异的性能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K