首页
/ HD-GCN 开源项目使用教程

HD-GCN 开源项目使用教程

2024-09-14 03:32:29作者:彭桢灵Jeremy

项目介绍

HD-GCN(Hierarchically Decomposed Graph Convolutional Networks)是一个用于基于骨架的动作识别的开源项目。该项目在ICCV 2023上被提出,旨在通过层次分解的图卷积网络(HD-GCN)架构来提高动作识别的性能。HD-GCN通过将每个关节节点分解为多个集合,提取主要的结构相邻和远距离边,并使用这些边来构建一个包含这些边的HD-Graph。此外,项目还引入了注意力引导的层次聚合(A-HA)模块,以突出HD-Graph的主导层次边集。

项目快速启动

环境准备

首先,确保你的环境中安装了以下依赖:

  • Python >= 3.6
  • PyTorch >= 1.10.0
  • PyYAML == 5.4.1
  • torchpack == 0.2.2
  • matplotlib
  • einops
  • sklearn
  • tqdm
  • tensorboardX
  • h5py

你可以使用以下命令安装这些依赖:

pip install -e torchlight

数据准备

下载所需的三个数据集:

  1. NTU RGB+D 60 Skeleton
  2. NTU RGB+D 120 Skeleton
  3. NW-UCLA

将下载的数据集解压到指定目录:

/data/nturgbd_raw

数据处理

生成NTU RGB+D 60或NTU RGB+D 120数据集:

cd /data/ntu
# 获取每个表演者的骨架数据
python get_raw_skes_data.py
# 去除不良骨架
python get_raw_denoised_data.py
# 将骨架转换到第一帧的中心
python seq_transformation.py

训练与测试

训练

以NTU RGB+D 60交叉主体为例,训练HD-GCN(joint CoM 1):

python main.py --config /config/nturgbd60-cross-subject/joint_com_1.yaml --device 0

测试

测试已训练的模型:

python main.py --config <work_dir>/config.yaml --work-dir <work_dir> --phase test --save-score True --weights <work_dir>/xxx.pt --device 0

应用案例和最佳实践

HD-GCN在多个大型数据集上展示了其优越的性能,包括NTU-RGB+D 60、NTU-RGB+D 120和Northwestern-UCLA。通过六种方式的集成方法,HD-GCN在没有任何运动流的情况下,仅使用关节和骨骼流,就实现了最先进的性能。

最佳实践

  1. 数据预处理:确保数据预处理步骤正确执行,以避免不良数据对模型性能的影响。
  2. 模型训练:使用适当的配置文件进行模型训练,并监控训练过程中的损失和准确率。
  3. 模型测试:在测试阶段,确保使用与训练阶段相同的配置,以获得一致的结果。

典型生态项目

HD-GCN项目基于多个开源项目构建,包括2s-AGCN和CTR-GCN。数据处理部分借鉴了SGN和HCN项目。这些项目共同构成了一个丰富的生态系统,为基于骨架的动作识别提供了强大的工具和方法。

相关项目

  • 2s-AGCN:双流自适应图卷积网络,用于动作识别。
  • CTR-GCN:基于图卷积网络的动作识别模型。
  • SGN:基于骨架的动作识别模型。
  • HCN:基于层次卷积网络的动作识别模型。

通过结合这些项目,HD-GCN能够更好地理解和识别复杂的动作模式,从而在多个数据集上取得优异的性能。

登录后查看全文
热门项目推荐