首页
/ HD-GCN 开源项目使用教程

HD-GCN 开源项目使用教程

2024-09-14 20:34:43作者:彭桢灵Jeremy

项目介绍

HD-GCN(Hierarchically Decomposed Graph Convolutional Networks)是一个用于基于骨架的动作识别的开源项目。该项目在ICCV 2023上被提出,旨在通过层次分解的图卷积网络(HD-GCN)架构来提高动作识别的性能。HD-GCN通过将每个关节节点分解为多个集合,提取主要的结构相邻和远距离边,并使用这些边来构建一个包含这些边的HD-Graph。此外,项目还引入了注意力引导的层次聚合(A-HA)模块,以突出HD-Graph的主导层次边集。

项目快速启动

环境准备

首先,确保你的环境中安装了以下依赖:

  • Python >= 3.6
  • PyTorch >= 1.10.0
  • PyYAML == 5.4.1
  • torchpack == 0.2.2
  • matplotlib
  • einops
  • sklearn
  • tqdm
  • tensorboardX
  • h5py

你可以使用以下命令安装这些依赖:

pip install -e torchlight

数据准备

下载所需的三个数据集:

  1. NTU RGB+D 60 Skeleton
  2. NTU RGB+D 120 Skeleton
  3. NW-UCLA

将下载的数据集解压到指定目录:

/data/nturgbd_raw

数据处理

生成NTU RGB+D 60或NTU RGB+D 120数据集:

cd /data/ntu
# 获取每个表演者的骨架数据
python get_raw_skes_data.py
# 去除不良骨架
python get_raw_denoised_data.py
# 将骨架转换到第一帧的中心
python seq_transformation.py

训练与测试

训练

以NTU RGB+D 60交叉主体为例,训练HD-GCN(joint CoM 1):

python main.py --config /config/nturgbd60-cross-subject/joint_com_1.yaml --device 0

测试

测试已训练的模型:

python main.py --config <work_dir>/config.yaml --work-dir <work_dir> --phase test --save-score True --weights <work_dir>/xxx.pt --device 0

应用案例和最佳实践

HD-GCN在多个大型数据集上展示了其优越的性能,包括NTU-RGB+D 60、NTU-RGB+D 120和Northwestern-UCLA。通过六种方式的集成方法,HD-GCN在没有任何运动流的情况下,仅使用关节和骨骼流,就实现了最先进的性能。

最佳实践

  1. 数据预处理:确保数据预处理步骤正确执行,以避免不良数据对模型性能的影响。
  2. 模型训练:使用适当的配置文件进行模型训练,并监控训练过程中的损失和准确率。
  3. 模型测试:在测试阶段,确保使用与训练阶段相同的配置,以获得一致的结果。

典型生态项目

HD-GCN项目基于多个开源项目构建,包括2s-AGCN和CTR-GCN。数据处理部分借鉴了SGN和HCN项目。这些项目共同构成了一个丰富的生态系统,为基于骨架的动作识别提供了强大的工具和方法。

相关项目

  • 2s-AGCN:双流自适应图卷积网络,用于动作识别。
  • CTR-GCN:基于图卷积网络的动作识别模型。
  • SGN:基于骨架的动作识别模型。
  • HCN:基于层次卷积网络的动作识别模型。

通过结合这些项目,HD-GCN能够更好地理解和识别复杂的动作模式,从而在多个数据集上取得优异的性能。

登录后查看全文
热门项目推荐

最新内容推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
248
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
381
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0