HD-GCN 开源项目使用教程
2024-09-14 07:24:53作者:彭桢灵Jeremy
项目介绍
HD-GCN(Hierarchically Decomposed Graph Convolutional Networks)是一个用于基于骨架的动作识别的开源项目。该项目在ICCV 2023上被提出,旨在通过层次分解的图卷积网络(HD-GCN)架构来提高动作识别的性能。HD-GCN通过将每个关节节点分解为多个集合,提取主要的结构相邻和远距离边,并使用这些边来构建一个包含这些边的HD-Graph。此外,项目还引入了注意力引导的层次聚合(A-HA)模块,以突出HD-Graph的主导层次边集。
项目快速启动
环境准备
首先,确保你的环境中安装了以下依赖:
- Python >= 3.6
- PyTorch >= 1.10.0
- PyYAML == 5.4.1
- torchpack == 0.2.2
- matplotlib
- einops
- sklearn
- tqdm
- tensorboardX
- h5py
你可以使用以下命令安装这些依赖:
pip install -e torchlight
数据准备
下载所需的三个数据集:
- NTU RGB+D 60 Skeleton
- NTU RGB+D 120 Skeleton
- NW-UCLA
将下载的数据集解压到指定目录:
/data/nturgbd_raw
数据处理
生成NTU RGB+D 60或NTU RGB+D 120数据集:
cd /data/ntu
# 获取每个表演者的骨架数据
python get_raw_skes_data.py
# 去除不良骨架
python get_raw_denoised_data.py
# 将骨架转换到第一帧的中心
python seq_transformation.py
训练与测试
训练
以NTU RGB+D 60交叉主体为例,训练HD-GCN(joint CoM 1):
python main.py --config /config/nturgbd60-cross-subject/joint_com_1.yaml --device 0
测试
测试已训练的模型:
python main.py --config <work_dir>/config.yaml --work-dir <work_dir> --phase test --save-score True --weights <work_dir>/xxx.pt --device 0
应用案例和最佳实践
HD-GCN在多个大型数据集上展示了其优越的性能,包括NTU-RGB+D 60、NTU-RGB+D 120和Northwestern-UCLA。通过六种方式的集成方法,HD-GCN在没有任何运动流的情况下,仅使用关节和骨骼流,就实现了最先进的性能。
最佳实践
- 数据预处理:确保数据预处理步骤正确执行,以避免不良数据对模型性能的影响。
- 模型训练:使用适当的配置文件进行模型训练,并监控训练过程中的损失和准确率。
- 模型测试:在测试阶段,确保使用与训练阶段相同的配置,以获得一致的结果。
典型生态项目
HD-GCN项目基于多个开源项目构建,包括2s-AGCN和CTR-GCN。数据处理部分借鉴了SGN和HCN项目。这些项目共同构成了一个丰富的生态系统,为基于骨架的动作识别提供了强大的工具和方法。
相关项目
- 2s-AGCN:双流自适应图卷积网络,用于动作识别。
- CTR-GCN:基于图卷积网络的动作识别模型。
- SGN:基于骨架的动作识别模型。
- HCN:基于层次卷积网络的动作识别模型。
通过结合这些项目,HD-GCN能够更好地理解和识别复杂的动作模式,从而在多个数据集上取得优异的性能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
214
234
暂无简介
Dart
661
151
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
294
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
491
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
80
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1