GLM-4项目中的P-Tuning v2微调后推理问题解析
2025-06-03 04:39:57作者:冯爽妲Honey
问题背景
在使用GLM-4项目进行P-Tuning v2微调时,用户遇到了一个典型的技术障碍:在成功完成5000轮微调训练后,尝试加载检查点进行推理时,系统抛出了一个关于peft(Python Efficient Fine-Tuning)库不支持prompt learning的错误。这个问题的核心在于P-Tuning v2微调方法与当前peft库版本之间的兼容性问题。
技术细节分析
P-Tuning v2是一种参数高效的微调方法,它通过引入可训练的prompt参数来调整模型行为,而不是直接修改模型的所有参数。这种方法特别适合大语言模型的微调场景,因为它可以显著减少训练所需的计算资源。
在GLM-4的实现中,P-Tuning v2微调后会生成包含prompt参数的检查点文件。然而,当使用peft库的inject_adapter_in_model功能加载这些检查点时,当前版本的peft库(0.4.0及以下)尚未完全支持prompt learning类型的适配器注入,导致了上述错误。
解决方案
针对这一问题,开发者已经通过提交修复了这个兼容性问题。修复的核心思路是:
- 更新peft库中关于适配器注入的逻辑
- 确保P-Tuning v2生成的prompt参数能够被正确识别和处理
- 完善检查点加载流程中对prompt learning类型的支持
用户可以通过以下方式解决这个问题:
- 更新到包含修复的最新版本GLM-4代码
- 确保使用兼容版本的peft库(0.4.0以上)
- 重新生成检查点文件(如果之前生成的检查点与新版本不兼容)
最佳实践建议
对于使用GLM-4进行P-Tuning v2微调的用户,建议:
- 始终使用项目推荐的环境配置和库版本
- 在进行大规模微调前,先进行小规模测试确保整个流程(训练+推理)能够正常运行
- 关注项目更新日志,及时了解关于P-Tuning实现的改进
- 对于生产环境,考虑使用更稳定的微调方法,如LoRA,直到P-Tuning v2的支持更加成熟
技术展望
随着参数高效微调技术的发展,P-Tuning v2等方法的支持将会越来越完善。未来版本的peft库很可能会:
- 提供更全面的prompt learning支持
- 优化检查点加载效率
- 增加对不同类型微调方法的兼容性处理
- 提供更清晰的错误提示和文档说明
这个问题及其解决方案体现了开源项目中技术迭代的典型过程,也展示了GLM-4社区对用户反馈的快速响应能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137