GLM-4项目中的P-Tuning v2微调后推理问题解析
2025-06-03 21:27:26作者:冯爽妲Honey
问题背景
在使用GLM-4项目进行P-Tuning v2微调时,用户遇到了一个典型的技术障碍:在成功完成5000轮微调训练后,尝试加载检查点进行推理时,系统抛出了一个关于peft(Python Efficient Fine-Tuning)库不支持prompt learning的错误。这个问题的核心在于P-Tuning v2微调方法与当前peft库版本之间的兼容性问题。
技术细节分析
P-Tuning v2是一种参数高效的微调方法,它通过引入可训练的prompt参数来调整模型行为,而不是直接修改模型的所有参数。这种方法特别适合大语言模型的微调场景,因为它可以显著减少训练所需的计算资源。
在GLM-4的实现中,P-Tuning v2微调后会生成包含prompt参数的检查点文件。然而,当使用peft库的inject_adapter_in_model功能加载这些检查点时,当前版本的peft库(0.4.0及以下)尚未完全支持prompt learning类型的适配器注入,导致了上述错误。
解决方案
针对这一问题,开发者已经通过提交修复了这个兼容性问题。修复的核心思路是:
- 更新peft库中关于适配器注入的逻辑
- 确保P-Tuning v2生成的prompt参数能够被正确识别和处理
- 完善检查点加载流程中对prompt learning类型的支持
用户可以通过以下方式解决这个问题:
- 更新到包含修复的最新版本GLM-4代码
- 确保使用兼容版本的peft库(0.4.0以上)
- 重新生成检查点文件(如果之前生成的检查点与新版本不兼容)
最佳实践建议
对于使用GLM-4进行P-Tuning v2微调的用户,建议:
- 始终使用项目推荐的环境配置和库版本
- 在进行大规模微调前,先进行小规模测试确保整个流程(训练+推理)能够正常运行
- 关注项目更新日志,及时了解关于P-Tuning实现的改进
- 对于生产环境,考虑使用更稳定的微调方法,如LoRA,直到P-Tuning v2的支持更加成熟
技术展望
随着参数高效微调技术的发展,P-Tuning v2等方法的支持将会越来越完善。未来版本的peft库很可能会:
- 提供更全面的prompt learning支持
- 优化检查点加载效率
- 增加对不同类型微调方法的兼容性处理
- 提供更清晰的错误提示和文档说明
这个问题及其解决方案体现了开源项目中技术迭代的典型过程,也展示了GLM-4社区对用户反馈的快速响应能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355