GLM-4模型微调后加载问题解析与解决方案
问题背景
在使用THUDM的GLM-4大语言模型进行微调时,许多开发者会遇到一个常见问题:使用ptuning方法微调后的模型无法直接加载,系统会提示"不支持prompt learning",而相同代码却能成功加载lora微调的模型。这个问题困扰了不少尝试使用不同微调方法的开发者。
问题本质分析
这个问题的根本原因在于ptuning和lora两种微调方法在模型架构和参数保存方式上的差异:
-
ptuning微调:这种方法主要通过添加可训练的prompt参数来实现模型微调,原始模型参数保持不变。微调后的模型实际上包含了原始模型和新增的prompt参数两部分。
-
lora微调:这种方法通过在原始模型参数旁添加低秩适配器来实现微调,同样保留了原始模型参数。
当尝试加载ptuning微调后的模型时,系统需要特殊的处理方式来合并原始模型和prompt参数,而直接加载的方式无法自动完成这个合并过程。
解决方案
针对ptuning微调后模型的加载问题,可以采用以下方法解决:
-
模型合并:在加载ptuning微调模型前,需要先将微调产生的prompt参数与原始模型进行合并。这个过程类似于lora微调后需要进行的模型合并操作。
-
使用专用加载方法:参考项目中的inference.py文件提供的模型加载方式,这些方法已经内置了对ptuning微调模型的支持。
具体实现建议
对于使用ptuning微调的GLM-4-Chat模型,建议按照以下步骤操作:
-
确保保存微调模型时同时保存了所有必要文件,包括prompt参数和原始模型配置。
-
使用项目提供的专用加载函数,而非直接使用常规的模型加载方法。
-
在加载前检查模型文件完整性,确保没有缺失任何微调产生的附加文件。
技术细节说明
ptuning微调产生的模型实际上由三部分组成:
- 基础语言模型参数
- 可训练的prompt embeddings
- 微调配置信息
正确的加载流程应该是:
- 首先加载基础语言模型
- 然后加载prompt参数
- 最后将两者按照微调配置进行合并
这个过程与lora微调的加载流程类似,但具体的合并方式有所不同,这也是为什么需要专门的处理方法。
最佳实践建议
-
对于GLM-4模型的微调,建议先了解清楚不同微调方法(p-tuning、lora等)的输出格式和加载要求。
-
在微调前规划好后续的模型使用场景,选择最适合的微调方法。
-
保存模型时,同时保存完整的微调配置和参数,便于后续加载和使用。
-
参考项目文档和示例代码中的模型加载方式,避免直接使用通用加载方法。
通过以上方法和注意事项,开发者可以顺利解决GLM-4模型ptuning微调后的加载问题,充分发挥不同微调方法的优势。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









