GLM-4模型微调后加载问题解析与解决方案
问题背景
在使用THUDM的GLM-4大语言模型进行微调时,许多开发者会遇到一个常见问题:使用ptuning方法微调后的模型无法直接加载,系统会提示"不支持prompt learning",而相同代码却能成功加载lora微调的模型。这个问题困扰了不少尝试使用不同微调方法的开发者。
问题本质分析
这个问题的根本原因在于ptuning和lora两种微调方法在模型架构和参数保存方式上的差异:
-
ptuning微调:这种方法主要通过添加可训练的prompt参数来实现模型微调,原始模型参数保持不变。微调后的模型实际上包含了原始模型和新增的prompt参数两部分。
-
lora微调:这种方法通过在原始模型参数旁添加低秩适配器来实现微调,同样保留了原始模型参数。
当尝试加载ptuning微调后的模型时,系统需要特殊的处理方式来合并原始模型和prompt参数,而直接加载的方式无法自动完成这个合并过程。
解决方案
针对ptuning微调后模型的加载问题,可以采用以下方法解决:
-
模型合并:在加载ptuning微调模型前,需要先将微调产生的prompt参数与原始模型进行合并。这个过程类似于lora微调后需要进行的模型合并操作。
-
使用专用加载方法:参考项目中的inference.py文件提供的模型加载方式,这些方法已经内置了对ptuning微调模型的支持。
具体实现建议
对于使用ptuning微调的GLM-4-Chat模型,建议按照以下步骤操作:
-
确保保存微调模型时同时保存了所有必要文件,包括prompt参数和原始模型配置。
-
使用项目提供的专用加载函数,而非直接使用常规的模型加载方法。
-
在加载前检查模型文件完整性,确保没有缺失任何微调产生的附加文件。
技术细节说明
ptuning微调产生的模型实际上由三部分组成:
- 基础语言模型参数
- 可训练的prompt embeddings
- 微调配置信息
正确的加载流程应该是:
- 首先加载基础语言模型
- 然后加载prompt参数
- 最后将两者按照微调配置进行合并
这个过程与lora微调的加载流程类似,但具体的合并方式有所不同,这也是为什么需要专门的处理方法。
最佳实践建议
-
对于GLM-4模型的微调,建议先了解清楚不同微调方法(p-tuning、lora等)的输出格式和加载要求。
-
在微调前规划好后续的模型使用场景,选择最适合的微调方法。
-
保存模型时,同时保存完整的微调配置和参数,便于后续加载和使用。
-
参考项目文档和示例代码中的模型加载方式,避免直接使用通用加载方法。
通过以上方法和注意事项,开发者可以顺利解决GLM-4模型ptuning微调后的加载问题,充分发挥不同微调方法的优势。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00