Tarantool 内存泄漏问题分析:coio_connect_timeout 中的 getaddrinfo 内存管理
在 Tarantool 数据库系统中,网络连接处理是其核心功能之一。最近在代码审查过程中,我们发现了一个潜在的内存泄漏问题,该问题出现在异步网络连接处理的底层函数中,特别是在处理 DNS 解析时未能正确释放内存资源。
问题背景
当 Tarantool 通过 net.box 模块尝试建立网络连接时,底层会调用 coio_connect_timeout 函数。这个函数负责在指定超时时间内完成连接建立。在连接过程中,系统需要进行 DNS 解析来获取目标地址信息,这时会调用 getaddrinfo 函数。
问题现象
通过 AddressSanitizer (ASAN) 内存检测工具,我们可以清晰地观察到内存泄漏现象。当执行简单的连接操作时,如尝试连接到一个不存在的端口,系统会泄漏 76 字节的内存。这个泄漏发生在 getaddrinfo 函数调用过程中分配的内存没有被正确释放。
技术分析
-
内存泄漏路径:
- 首先通过 malloc 分配 76 字节内存
- 在 getaddrinfo 函数内部生成地址信息
- 任务完成后,这些内存没有被释放
-
异步处理机制: Tarantool 使用 libeio 库进行异步 I/O 操作。在 coio_task.c 中,getaddrinfo 被封装为异步任务执行。当任务完成时,虽然连接失败,但分配的资源没有被清理。
-
根本原因: 问题出在错误处理路径上。当连接失败时,代码没有调用相应的资源释放函数来清理 getaddrinfo 分配的内存结构。
解决方案
正确的做法是在异步任务完成后,无论成功与否,都应该释放 getaddrinfo 分配的内存。这可以通过调用 freeaddrinfo 函数来实现。修复方案需要确保:
- 在 getaddrinfo_cb 回调函数中正确处理两种结果
- 在任务完成路径上统一释放资源
- 保持错误处理的一致性
影响范围
该问题从 Tarantool 2.10.0-beta1 版本引入,影响了后续的 2.11 和 3.2 版本。虽然每次泄漏的内存量不大,但在高频率连接失败场景下可能累积成显著的内存消耗。
最佳实践建议
对于网络编程中的资源管理,建议:
- 始终为异步操作配对资源分配和释放
- 使用自动化工具如 ASAN 进行内存泄漏检测
- 在错误处理路径上保持与正常路径相同的资源清理逻辑
- 对于第三方库分配的资源,要仔细查阅文档了解其生命周期管理要求
这个问题提醒我们,在网络编程中,即使是看似简单的连接操作,也需要仔细管理所有可能分配的资源,特别是在异步处理场景下。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









