Tarantool 内存泄漏问题分析:coio_connect_timeout 中的 getaddrinfo 内存管理
在 Tarantool 数据库系统中,网络连接处理是其核心功能之一。最近在代码审查过程中,我们发现了一个潜在的内存泄漏问题,该问题出现在异步网络连接处理的底层函数中,特别是在处理 DNS 解析时未能正确释放内存资源。
问题背景
当 Tarantool 通过 net.box 模块尝试建立网络连接时,底层会调用 coio_connect_timeout 函数。这个函数负责在指定超时时间内完成连接建立。在连接过程中,系统需要进行 DNS 解析来获取目标地址信息,这时会调用 getaddrinfo 函数。
问题现象
通过 AddressSanitizer (ASAN) 内存检测工具,我们可以清晰地观察到内存泄漏现象。当执行简单的连接操作时,如尝试连接到一个不存在的端口,系统会泄漏 76 字节的内存。这个泄漏发生在 getaddrinfo 函数调用过程中分配的内存没有被正确释放。
技术分析
-
内存泄漏路径:
- 首先通过 malloc 分配 76 字节内存
- 在 getaddrinfo 函数内部生成地址信息
- 任务完成后,这些内存没有被释放
-
异步处理机制: Tarantool 使用 libeio 库进行异步 I/O 操作。在 coio_task.c 中,getaddrinfo 被封装为异步任务执行。当任务完成时,虽然连接失败,但分配的资源没有被清理。
-
根本原因: 问题出在错误处理路径上。当连接失败时,代码没有调用相应的资源释放函数来清理 getaddrinfo 分配的内存结构。
解决方案
正确的做法是在异步任务完成后,无论成功与否,都应该释放 getaddrinfo 分配的内存。这可以通过调用 freeaddrinfo 函数来实现。修复方案需要确保:
- 在 getaddrinfo_cb 回调函数中正确处理两种结果
- 在任务完成路径上统一释放资源
- 保持错误处理的一致性
影响范围
该问题从 Tarantool 2.10.0-beta1 版本引入,影响了后续的 2.11 和 3.2 版本。虽然每次泄漏的内存量不大,但在高频率连接失败场景下可能累积成显著的内存消耗。
最佳实践建议
对于网络编程中的资源管理,建议:
- 始终为异步操作配对资源分配和释放
- 使用自动化工具如 ASAN 进行内存泄漏检测
- 在错误处理路径上保持与正常路径相同的资源清理逻辑
- 对于第三方库分配的资源,要仔细查阅文档了解其生命周期管理要求
这个问题提醒我们,在网络编程中,即使是看似简单的连接操作,也需要仔细管理所有可能分配的资源,特别是在异步处理场景下。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00