Tarantool项目中Vinyl引擎内存泄漏问题的分析与修复
问题背景
在Tarantool数据库的Vinyl存储引擎中,开发团队发现了一个内存泄漏问题。该问题在运行vinyl/recovery_quota.test.lua
测试用例时被ASAN(AddressSanitizer)工具检测到。内存泄漏发生在Vinyl引擎执行范围压缩(range compaction)操作失败的情况下。
问题现象
ASAN报告显示,当压缩范围(-inf..inf)失败时,系统泄漏了4字节的内存。这个内存分配发生在vy_key_dup
函数中,该函数用于复制键值。泄漏的调用链清晰地展示了从内存分配到最终泄漏的完整路径:
- 通过
malloc
分配4字节内存 vy_key_dup
函数创建键的副本vy_page_info_create
函数创建页面信息- 后续的Vinyl引擎压缩操作流程
技术分析
深入分析代码可以发现,这个问题是在Vinyl引擎处理压缩任务时出现的。当压缩操作失败时,系统没有正确释放之前为页面信息分配的内存资源。
具体来说,在vy_run_writer_start_page
函数中调用了vy_page_info_create
来创建页面信息,而后者又通过vy_key_dup
分配了内存。当压缩操作在后续步骤中失败时,这些分配的资源没有被妥善释放。
这个问题最初是在Tarantool 1.7.2-405-g9b99d64b0版本中引入的,影响了后续的2.11和3.2版本。
解决方案
修复这个内存泄漏问题的关键在于确保在压缩操作失败时,所有已分配的资源都能被正确释放。开发团队采取了以下措施:
- 在压缩任务执行失败时,添加了适当的资源清理逻辑
- 确保页面信息创建过程中分配的内存能够在错误路径上被释放
- 完善了错误处理机制,使系统在遇到压缩失败时能够优雅地回收所有已分配资源
修复效果
经过修复后,ASAN不再报告内存泄漏问题。系统现在能够在压缩操作失败时正确释放所有已分配的内存资源,避免了内存泄漏的发生。这对于长期运行的Tarantool实例尤为重要,因为即使是小量的内存泄漏,在长时间累积后也可能导致严重的内存耗尽问题。
总结
内存管理是数据库系统开发中的关键问题之一。这次对Vinyl引擎内存泄漏问题的修复,不仅解决了一个具体的技术问题,也提醒开发者在资源分配和释放的对称性上需要格外注意。特别是在错误处理路径上,必须确保所有已分配的资源都能被正确释放,这样才能构建出健壮可靠的数据库系统。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









