ONNX项目中Shape推断过程中的SegFault问题分析
问题背景
在ONNX(Open Neural Network Exchange)项目中,当开发者在定义自定义算子(CustomOp)时,如果没有正确设置算子的输入输出schema,在进行形状推断(shape inference)时会导致程序出现段错误(Segmentation Fault)。这是一个比较严重的问题,因为它会导致整个程序崩溃,而不是优雅地抛出异常。
问题现象
当开发者定义了一个自定义算子但没有完整定义其schema时,例如只声明了算子名称但没有指定输入输出参数:
ONNX_OPERATOR_SCHEMA(CustomOp);
然后在Python端尝试进行形状推断时:
model = onnx.parser.parse_model(input)
onnx.shape_inference.infer_shapes(model, True)
程序会直接崩溃,而不是抛出预期的Python异常。这种崩溃行为对于开发者来说很不友好,也难以调试。
技术原理分析
这个问题的根本原因在于ONNX的形状推断机制。当进行形状推断时,ONNX运行时需要查询算子的schema信息来确定输入输出的形状关系。如果schema没有正确定义(特别是输入输出参数为空),但实际的模型图中却有对应的输入输出时,会导致以下问题:
- 形状推断器会尝试访问schema的输入输出参数列表
- 由于schema未正确定义,这些列表可能是空的
- 当尝试访问空列表的最后一个元素(如使用
input.back())时,会导致未定义行为 - 最终表现为段错误,程序崩溃
解决方案建议
为了解决这个问题,ONNX应该在以下几个层面进行改进:
-
Schema验证:在注册schema时,应该验证其完整性,确保至少定义了基本的输入输出参数
-
安全访问:在形状推断代码中,访问schema参数前应该先检查是否为空,避免直接访问空容器
-
异常处理:当检测到schema不完整时,应该抛出明确的异常信息,而不是导致程序崩溃
-
文档完善:在自定义算子开发的文档中,应该强调完整定义schema的重要性,并提供示例代码
开发者应对措施
对于ONNX开发者来说,在定义自定义算子时应该:
- 始终完整定义算子的schema,包括输入输出参数
- 在不确定schema是否正确定义时,可以先查询已注册的schema
- 在开发阶段使用调试版本,可以更容易发现这类问题
- 关注ONNX的更新,及时应用相关修复
总结
这个SegFault问题揭示了ONNX在错误处理和边界条件检查方面的不足。作为AI模型交换格式的基础设施,ONNX应该更加健壮,能够优雅地处理各种错误情况,而不是直接崩溃。通过改进schema验证机制和添加适当的错误检查,可以显著提升开发体验和系统稳定性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00