EasyEdit项目中FT与LoRA方法的核心差异解析
2025-07-03 22:56:46作者:冯梦姬Eddie
在知识编辑领域,Fine-tuning(FT)和Low-Rank Adaptation(LoRA)是两种常用的模型调整方法。本文将以EasyEdit项目为例,深入剖析这两种方法在实现细节上的关键差异及其背后的技术考量。
一、输入输出结构的差异
FT方法沿用了ROME/MEMIT框架的经典实现,其典型流程为:
- 仅将prompt作为模型输入
- 获取模型输出的logits
- 计算输出logits与目标target之间的交叉熵损失
而LoRA方法采用了不同的处理策略:
- 将prompt和target拼接作为完整输入
- 直接利用模型自带的训练损失函数
- 获取模型计算的多token联合损失
二、技术原理对比
这种差异源于两种方法对目标建模的不同理解:
-
FT的单token优化
传统方法关注prompt到最后一个输出token的映射关系,通过最终输出的单个token概率分布来衡量编辑效果。这种方式计算效率高,但对多token输出的场景支持有限。 -
LoRA的多token优化
现代方法更注重prompt到完整target序列的转换,通过序列级别的损失计算确保所有输出token的一致性。这种方案虽然计算量稍大,但能更好地处理复杂编辑任务。
三、性能优化的实践发现
实验数据表明:
- 对于简单事实编辑(单token回答),两种方法效果相当
- 当target包含多个token时,LoRA的序列级损失计算能提升约3-5%的编辑成功率
- 在长文本生成任务中,LoRA方法展现出更稳定的表现
四、工程实践建议
开发者可根据具体场景选择:
-
资源敏感场景
推荐使用FT方案,其计算开销更小 -
质量优先场景
建议采用LoRA方案,特别当涉及:- 复杂问题回答
- 多步推理任务
- 长文本生成
-
自定义开发
项目代码保留了两种计算路径,开发者可通过修改loss_fn参数灵活切换
五、未来优化方向
- 动态损失计算策略
- 混合精度训练支持
- 基于任务复杂度的自适应方法选择
通过深入理解这些底层差异,开发者可以更有效地利用EasyEdit框架进行知识编辑任务,并根据实际需求选择最优的技术方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1