EasyEdit项目中FT与LoRA方法的核心差异解析
2025-07-03 08:24:47作者:冯梦姬Eddie
在知识编辑领域,Fine-tuning(FT)和Low-Rank Adaptation(LoRA)是两种常用的模型调整方法。本文将以EasyEdit项目为例,深入剖析这两种方法在实现细节上的关键差异及其背后的技术考量。
一、输入输出结构的差异
FT方法沿用了ROME/MEMIT框架的经典实现,其典型流程为:
- 仅将prompt作为模型输入
- 获取模型输出的logits
- 计算输出logits与目标target之间的交叉熵损失
而LoRA方法采用了不同的处理策略:
- 将prompt和target拼接作为完整输入
- 直接利用模型自带的训练损失函数
- 获取模型计算的多token联合损失
二、技术原理对比
这种差异源于两种方法对目标建模的不同理解:
-
FT的单token优化
传统方法关注prompt到最后一个输出token的映射关系,通过最终输出的单个token概率分布来衡量编辑效果。这种方式计算效率高,但对多token输出的场景支持有限。 -
LoRA的多token优化
现代方法更注重prompt到完整target序列的转换,通过序列级别的损失计算确保所有输出token的一致性。这种方案虽然计算量稍大,但能更好地处理复杂编辑任务。
三、性能优化的实践发现
实验数据表明:
- 对于简单事实编辑(单token回答),两种方法效果相当
- 当target包含多个token时,LoRA的序列级损失计算能提升约3-5%的编辑成功率
- 在长文本生成任务中,LoRA方法展现出更稳定的表现
四、工程实践建议
开发者可根据具体场景选择:
-
资源敏感场景
推荐使用FT方案,其计算开销更小 -
质量优先场景
建议采用LoRA方案,特别当涉及:- 复杂问题回答
- 多步推理任务
- 长文本生成
-
自定义开发
项目代码保留了两种计算路径,开发者可通过修改loss_fn参数灵活切换
五、未来优化方向
- 动态损失计算策略
- 混合精度训练支持
- 基于任务复杂度的自适应方法选择
通过深入理解这些底层差异,开发者可以更有效地利用EasyEdit框架进行知识编辑任务,并根据实际需求选择最优的技术方案。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133