JeecgBoot集成ShardingSphere分库分表实战指南
项目背景
JeecgBoot作为一款基于SpringBoot的快速开发平台,在实际企业应用中经常需要处理海量数据存储问题。ShardingSphere作为Apache顶级项目,提供了强大的分库分表能力。本文将详细介绍如何在JeecgBoot 3.5.3版本中正确集成ShardingSphere组件。
常见集成问题分析
在集成过程中,开发者通常会遇到两类典型问题:
-
类型缺失错误:当仅引入jeecg-boot-starter-shardingsphere依赖时,系统会提示Type相关类缺失。这是因为ShardingSphere的核心功能需要额外的基础依赖支持。
-
版本冲突问题:直接引入ShardingSphere官方依赖(如5.1.1版本)时,可能出现类加载异常或方法不兼容的情况,这是因为JeecgBoot框架对某些Spring组件有特定版本要求。
正确集成方案
依赖配置
在JeecgBoot项目中,推荐使用以下依赖配置方式:
- 在system-start模块的pom.xml中添加:
<dependency>
<groupId>org.jeecgframework.boot</groupId>
<artifactId>jeecg-boot-starter-shardingsphere</artifactId>
<version>${jeecg.boot.version}</version>
</dependency>
- 同时需要确保项目基础依赖完整,特别是Spring Boot和MyBatis相关依赖。
配置示例
在application.yml中配置ShardingSphere规则:
spring:
shardingsphere:
datasource:
names: ds0,ds1
ds0:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/db0
username: root
password: 123456
ds1:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/db1
username: root
password: 123456
sharding:
tables:
t_order:
actual-data-nodes: ds$->{0..1}.t_order_$->{0..1}
table-strategy:
inline:
sharding-column: order_id
algorithm-expression: t_order_$->{order_id % 2}
key-generator:
column: order_id
type: SNOWFLAKE
技术实现原理
JeecgBoot通过starter方式对ShardingSphere进行了二次封装,主要实现了:
-
自动配置:基于Spring Boot的自动配置机制,简化了ShardingSphere的初始化过程。
-
版本适配:解决了ShardingSphere与JeecgBoot内部组件(如MyBatis、HikariCP等)的版本兼容性问题。
-
扩展支持:提供了对分布式事务、读写分离等高级特性的开箱即用支持。
最佳实践建议
-
分片策略设计:根据业务特点选择合适的分片键,避免热点数据问题。
-
事务处理:在分布式环境下,需要特别注意事务边界,建议使用ShardingSphere提供的分布式事务支持。
-
SQL兼容性:某些复杂SQL在分片环境下可能无法执行,需要在开发阶段进行充分测试。
-
监控集成:建议集成ShardingSphere的监控模块,便于及时发现性能瓶颈。
总结
JeecgBoot与ShardingSphere的集成能够有效解决企业级应用的海量数据存储和查询性能问题。通过本文介绍的集成方案,开发者可以避免常见的配置错误,快速构建高性能的分布式数据访问层。在实际项目中,还需要根据具体业务场景调整分片策略和优化SQL语句,以获得最佳性能表现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01