JeecgBoot集成ShardingSphere分库分表实战指南
项目背景
JeecgBoot作为一款基于SpringBoot的快速开发平台,在实际企业应用中经常需要处理海量数据存储问题。ShardingSphere作为Apache顶级项目,提供了强大的分库分表能力。本文将详细介绍如何在JeecgBoot 3.5.3版本中正确集成ShardingSphere组件。
常见集成问题分析
在集成过程中,开发者通常会遇到两类典型问题:
-
类型缺失错误:当仅引入jeecg-boot-starter-shardingsphere依赖时,系统会提示Type相关类缺失。这是因为ShardingSphere的核心功能需要额外的基础依赖支持。
-
版本冲突问题:直接引入ShardingSphere官方依赖(如5.1.1版本)时,可能出现类加载异常或方法不兼容的情况,这是因为JeecgBoot框架对某些Spring组件有特定版本要求。
正确集成方案
依赖配置
在JeecgBoot项目中,推荐使用以下依赖配置方式:
- 在system-start模块的pom.xml中添加:
<dependency>
<groupId>org.jeecgframework.boot</groupId>
<artifactId>jeecg-boot-starter-shardingsphere</artifactId>
<version>${jeecg.boot.version}</version>
</dependency>
- 同时需要确保项目基础依赖完整,特别是Spring Boot和MyBatis相关依赖。
配置示例
在application.yml中配置ShardingSphere规则:
spring:
shardingsphere:
datasource:
names: ds0,ds1
ds0:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/db0
username: root
password: 123456
ds1:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/db1
username: root
password: 123456
sharding:
tables:
t_order:
actual-data-nodes: ds$->{0..1}.t_order_$->{0..1}
table-strategy:
inline:
sharding-column: order_id
algorithm-expression: t_order_$->{order_id % 2}
key-generator:
column: order_id
type: SNOWFLAKE
技术实现原理
JeecgBoot通过starter方式对ShardingSphere进行了二次封装,主要实现了:
-
自动配置:基于Spring Boot的自动配置机制,简化了ShardingSphere的初始化过程。
-
版本适配:解决了ShardingSphere与JeecgBoot内部组件(如MyBatis、HikariCP等)的版本兼容性问题。
-
扩展支持:提供了对分布式事务、读写分离等高级特性的开箱即用支持。
最佳实践建议
-
分片策略设计:根据业务特点选择合适的分片键,避免热点数据问题。
-
事务处理:在分布式环境下,需要特别注意事务边界,建议使用ShardingSphere提供的分布式事务支持。
-
SQL兼容性:某些复杂SQL在分片环境下可能无法执行,需要在开发阶段进行充分测试。
-
监控集成:建议集成ShardingSphere的监控模块,便于及时发现性能瓶颈。
总结
JeecgBoot与ShardingSphere的集成能够有效解决企业级应用的海量数据存储和查询性能问题。通过本文介绍的集成方案,开发者可以避免常见的配置错误,快速构建高性能的分布式数据访问层。在实际项目中,还需要根据具体业务场景调整分片策略和优化SQL语句,以获得最佳性能表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00