Django-Chartit 使用教程
项目介绍
Django-Chartit 是一个专为 Django 设计的应用程序,能够直接从数据库模型中绘制图表和透视图表。该库利用 Highcharts 和 jQuery 脚本库在网页上渲染图表。它支持多种图表类型,如折线图、柱状图、区域图、散点图等,并且能够创建数据分组及旋转展示的透视图表。项目提供了易于使用的API来简化数据库数据的可视化过程。
快速启动
要迅速开始使用 Django-Chartit,遵循以下步骤:
安装
首先,通过pip安装Django-Chartit:
pip install django_chartit
配置Django项目
-
在你的Django项目的
settings.py
中的INSTALLED_APPS
列表里添加chartit
.INSTALLED_APPS = [ ..., 'chartit', ... ]
-
确保你已经包含了Highcharts或兼容的JavaScript库到你的前端资源中。
示例代码
假设我们有一个简单的模型 MonthlyWeatherByCity
来记录不同城市的月平均温度。以下是如何创建并显示一个表示不同城市温度的图表示例。
步骤 1: 创建 DataPool
from chartit import DataPool
# 假设你已有 MonthlyWeatherByCity 模型
weatherdata = DataPool(
series=[
{
'options': {
'source': MonthlyWeatherByCity.objects.all(),
},
'terms': ['month', 'houston_temp', 'boston_temp'],
},
],
)
步骤 2: 创建 Chart
from chartit import Chart
cht = Chart(
datasource=weatherdata,
series_options=[
{
'options': {
'type': 'line',
'stacking': False,
},
'terms': {'month': ['boston_temp', 'houston_temp']},
},
],
chart_options={
'title': {'text': '波士顿与休斯顿的天气数据'},
'xAxis': {'title': {'text': '月份编号'}},
},
)
步骤 3: 在视图中返回图表
from django.shortcuts import render
def weather_chart_view(request):
return render(request, 'weather_chart.html', {'chart': cht})
步骤 4: Django模板使用
在weather_chart.html
中加载图表:
{% load chartit %}
<head>
<!-- 引入Highcharts库和jQuery -->
</head>
<body>
<div id="chart_div"></div>
{% load_charts chart %}
</body>
确保将Highcharts库的链接加入到头部,并且在模板中使用load_charts
标签指定图表的渲染位置。
应用案例和最佳实践
在实际应用中,Django-Chartit非常适合于数据分析界面,比如用于跟踪网站统计、销售趋势或者任何基于时间序列的数据分析。最佳实践包括充分利用其数据池和图表对象的灵活性,以及合理设计模型以优化查询效率。
典型生态项目
虽然Django-Chartit本身是专注于与Django应用集成的,但结合其他工具和框架可以构建强大的数据分析平台。例如,与Django REST Framework一起使用时,可以在前后端分离的架构中轻松提供图表数据服务。此外,考虑与数据处理库(如Pandas)结合,先进行复杂的数据预处理再供Chartit绘制,可以进一步扩展其功能范围。
以上是Django-Chartit的基本使用教程,更多高级特性和定制化需求请参考官方文档和源码注释。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









