Django-Chartit 使用教程
项目介绍
Django-Chartit 是一个专为 Django 设计的应用程序,能够直接从数据库模型中绘制图表和透视图表。该库利用 Highcharts 和 jQuery 脚本库在网页上渲染图表。它支持多种图表类型,如折线图、柱状图、区域图、散点图等,并且能够创建数据分组及旋转展示的透视图表。项目提供了易于使用的API来简化数据库数据的可视化过程。
快速启动
要迅速开始使用 Django-Chartit,遵循以下步骤:
安装
首先,通过pip安装Django-Chartit:
pip install django_chartit
配置Django项目
-
在你的Django项目的
settings.py中的INSTALLED_APPS列表里添加chartit.INSTALLED_APPS = [ ..., 'chartit', ... ] -
确保你已经包含了Highcharts或兼容的JavaScript库到你的前端资源中。
示例代码
假设我们有一个简单的模型 MonthlyWeatherByCity 来记录不同城市的月平均温度。以下是如何创建并显示一个表示不同城市温度的图表示例。
步骤 1: 创建 DataPool
from chartit import DataPool
# 假设你已有 MonthlyWeatherByCity 模型
weatherdata = DataPool(
series=[
{
'options': {
'source': MonthlyWeatherByCity.objects.all(),
},
'terms': ['month', 'houston_temp', 'boston_temp'],
},
],
)
步骤 2: 创建 Chart
from chartit import Chart
cht = Chart(
datasource=weatherdata,
series_options=[
{
'options': {
'type': 'line',
'stacking': False,
},
'terms': {'month': ['boston_temp', 'houston_temp']},
},
],
chart_options={
'title': {'text': '波士顿与休斯顿的天气数据'},
'xAxis': {'title': {'text': '月份编号'}},
},
)
步骤 3: 在视图中返回图表
from django.shortcuts import render
def weather_chart_view(request):
return render(request, 'weather_chart.html', {'chart': cht})
步骤 4: Django模板使用
在weather_chart.html中加载图表:
{% load chartit %}
<head>
<!-- 引入Highcharts库和jQuery -->
</head>
<body>
<div id="chart_div"></div>
{% load_charts chart %}
</body>
确保将Highcharts库的链接加入到头部,并且在模板中使用load_charts标签指定图表的渲染位置。
应用案例和最佳实践
在实际应用中,Django-Chartit非常适合于数据分析界面,比如用于跟踪网站统计、销售趋势或者任何基于时间序列的数据分析。最佳实践包括充分利用其数据池和图表对象的灵活性,以及合理设计模型以优化查询效率。
典型生态项目
虽然Django-Chartit本身是专注于与Django应用集成的,但结合其他工具和框架可以构建强大的数据分析平台。例如,与Django REST Framework一起使用时,可以在前后端分离的架构中轻松提供图表数据服务。此外,考虑与数据处理库(如Pandas)结合,先进行复杂的数据预处理再供Chartit绘制,可以进一步扩展其功能范围。
以上是Django-Chartit的基本使用教程,更多高级特性和定制化需求请参考官方文档和源码注释。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01