Django-Chartit 使用教程
项目介绍
Django-Chartit 是一个专为 Django 设计的应用程序,能够直接从数据库模型中绘制图表和透视图表。该库利用 Highcharts 和 jQuery 脚本库在网页上渲染图表。它支持多种图表类型,如折线图、柱状图、区域图、散点图等,并且能够创建数据分组及旋转展示的透视图表。项目提供了易于使用的API来简化数据库数据的可视化过程。
快速启动
要迅速开始使用 Django-Chartit,遵循以下步骤:
安装
首先,通过pip安装Django-Chartit:
pip install django_chartit
配置Django项目
-
在你的Django项目的
settings.py中的INSTALLED_APPS列表里添加chartit.INSTALLED_APPS = [ ..., 'chartit', ... ] -
确保你已经包含了Highcharts或兼容的JavaScript库到你的前端资源中。
示例代码
假设我们有一个简单的模型 MonthlyWeatherByCity 来记录不同城市的月平均温度。以下是如何创建并显示一个表示不同城市温度的图表示例。
步骤 1: 创建 DataPool
from chartit import DataPool
# 假设你已有 MonthlyWeatherByCity 模型
weatherdata = DataPool(
series=[
{
'options': {
'source': MonthlyWeatherByCity.objects.all(),
},
'terms': ['month', 'houston_temp', 'boston_temp'],
},
],
)
步骤 2: 创建 Chart
from chartit import Chart
cht = Chart(
datasource=weatherdata,
series_options=[
{
'options': {
'type': 'line',
'stacking': False,
},
'terms': {'month': ['boston_temp', 'houston_temp']},
},
],
chart_options={
'title': {'text': '波士顿与休斯顿的天气数据'},
'xAxis': {'title': {'text': '月份编号'}},
},
)
步骤 3: 在视图中返回图表
from django.shortcuts import render
def weather_chart_view(request):
return render(request, 'weather_chart.html', {'chart': cht})
步骤 4: Django模板使用
在weather_chart.html中加载图表:
{% load chartit %}
<head>
<!-- 引入Highcharts库和jQuery -->
</head>
<body>
<div id="chart_div"></div>
{% load_charts chart %}
</body>
确保将Highcharts库的链接加入到头部,并且在模板中使用load_charts标签指定图表的渲染位置。
应用案例和最佳实践
在实际应用中,Django-Chartit非常适合于数据分析界面,比如用于跟踪网站统计、销售趋势或者任何基于时间序列的数据分析。最佳实践包括充分利用其数据池和图表对象的灵活性,以及合理设计模型以优化查询效率。
典型生态项目
虽然Django-Chartit本身是专注于与Django应用集成的,但结合其他工具和框架可以构建强大的数据分析平台。例如,与Django REST Framework一起使用时,可以在前后端分离的架构中轻松提供图表数据服务。此外,考虑与数据处理库(如Pandas)结合,先进行复杂的数据预处理再供Chartit绘制,可以进一步扩展其功能范围。
以上是Django-Chartit的基本使用教程,更多高级特性和定制化需求请参考官方文档和源码注释。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00