首页
/ 推荐文章:ParC-Net —— 结合卷积与变换器优势的创新网络架构

推荐文章:ParC-Net —— 结合卷积与变换器优势的创新网络架构

2024-05-20 19:16:52作者:贡沫苏Truman

在计算机视觉领域,随着Vision Transformers的崛起,它们在大模型中的表现力已超越了传统的卷积神经网络(ConvNets)。然而,在资源有限的设备上,轻量级的ConvNets依然占据着性能和复杂度的优势。ParC-Net,一个全新的纯ConvNet后端模型,就是为解决这一问题而设计的,它将Transformer的优点巧妙地融入到ConvNets中。

项目简介

ParC-Net是由Position Aware Circular Convolution(ParC)构建的,这是一种轻量级的卷积操作,拥有全局的感受野,同时能生成位置敏感的特征,类似于局部卷积。通过结合ParC操作和squeeze-excitation机制,形成了一个类似于transformer的元块,可以方便地插入并替换现有的ConvNet或Transformer模型中的相应部分。在ImageNet-1k、MS-COCO对象检测和PASCAL VOC语义分割等任务上的实验结果显示,ParC-Net在参数更少、计算效率更高的情况下,性能优于现有的轻量级模型。

技术分析

核心在于ParC块的设计,该块由ParC卷积和squeeze-excitation操作组成。ParC卷积是一种创新的操作,它以圆形的方式扩展了传统卷积的视野,不仅保持了本地化信息处理的能力,还提供了全局的信息获取。这种混合方法赋予了模型类似注意力机制的特性,使其能更好地捕获上下文信息。

应用场景

ParC-Net适用于各种对计算资源要求严格的场景,如移动设备上的图像分类、对象检测和语义分割任务。对于智能手机和其他边缘计算设备而言,它能在不牺牲性能的情况下,实现更快的推理速度和更低的功耗。

项目特点

  • 融合优点:ParC-Net综合了ConvNets和Transformers的优势,提供了一种兼顾局部和全局信息的新颖卷积操作。
  • 高效轻量:在保证性能的同时,ParC-Net减少了约11%的参数和13%的计算成本,并且在ARM平台上的运行速度比MobileViT快23%。
  • 可插拔设计:ParC块可以轻松地应用于现有ConvNet或Transformer框架,便于快速迁移和定制。
  • 广泛应用:不仅在图像分类任务上表现出色,还在检测和分割任务中展示了优越的性能。

总的来说,ParC-Net是面向未来计算限制环境的理想选择,它革新了轻量级网络设计,推动了 ConvNets 和 Transformers 的融合。如果你正在寻找一个既能提高性能又节省资源的解决方案,那么ParC-Net绝对值得尝试。立即加入社区,探索这个项目的无限可能吧!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5