推荐文章:ParC-Net —— 结合卷积与变换器优势的创新网络架构
在计算机视觉领域,随着Vision Transformers的崛起,它们在大模型中的表现力已超越了传统的卷积神经网络(ConvNets)。然而,在资源有限的设备上,轻量级的ConvNets依然占据着性能和复杂度的优势。ParC-Net,一个全新的纯ConvNet后端模型,就是为解决这一问题而设计的,它将Transformer的优点巧妙地融入到ConvNets中。
项目简介
ParC-Net是由Position Aware Circular Convolution(ParC)构建的,这是一种轻量级的卷积操作,拥有全局的感受野,同时能生成位置敏感的特征,类似于局部卷积。通过结合ParC操作和squeeze-excitation机制,形成了一个类似于transformer的元块,可以方便地插入并替换现有的ConvNet或Transformer模型中的相应部分。在ImageNet-1k、MS-COCO对象检测和PASCAL VOC语义分割等任务上的实验结果显示,ParC-Net在参数更少、计算效率更高的情况下,性能优于现有的轻量级模型。
技术分析
核心在于ParC块的设计,该块由ParC卷积和squeeze-excitation操作组成。ParC卷积是一种创新的操作,它以圆形的方式扩展了传统卷积的视野,不仅保持了本地化信息处理的能力,还提供了全局的信息获取。这种混合方法赋予了模型类似注意力机制的特性,使其能更好地捕获上下文信息。
应用场景
ParC-Net适用于各种对计算资源要求严格的场景,如移动设备上的图像分类、对象检测和语义分割任务。对于智能手机和其他边缘计算设备而言,它能在不牺牲性能的情况下,实现更快的推理速度和更低的功耗。
项目特点
- 融合优点:ParC-Net综合了ConvNets和Transformers的优势,提供了一种兼顾局部和全局信息的新颖卷积操作。
- 高效轻量:在保证性能的同时,ParC-Net减少了约11%的参数和13%的计算成本,并且在ARM平台上的运行速度比MobileViT快23%。
- 可插拔设计:ParC块可以轻松地应用于现有ConvNet或Transformer框架,便于快速迁移和定制。
- 广泛应用:不仅在图像分类任务上表现出色,还在检测和分割任务中展示了优越的性能。
总的来说,ParC-Net是面向未来计算限制环境的理想选择,它革新了轻量级网络设计,推动了 ConvNets 和 Transformers 的融合。如果你正在寻找一个既能提高性能又节省资源的解决方案,那么ParC-Net绝对值得尝试。立即加入社区,探索这个项目的无限可能吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00