BBKNN 项目教程
1. 项目目录结构及介绍
BBKNN 项目的目录结构如下:
bbknn/
├── bbknn/
│ ├── __init__.py
│ ├── bbknn.py
│ ├── ridge_regression.py
│ ├── matrix_bbknn.py
│ └── ...
├── docs/
│ ├── conf.py
│ ├── index.rst
│ └── ...
├── examples/
│ ├── demo.ipynb
│ ├── simulation.ipynb
│ └── ...
├── figures/
│ ├── figure1.png
│ ├── figure2.png
│ └── ...
├── .gitignore
├── CHANGELOG.md
├── LICENSE
├── MANIFEST.in
├── README.md
├── pyproject.toml
└── ...
目录结构介绍
-
bbknn/: 包含 BBKNN 项目的主要代码文件。
__init__.py: 初始化文件,使bbknn成为一个 Python 包。bbknn.py: 主要功能实现文件,包含 BBKNN 算法的核心代码。ridge_regression.py: 实现岭回归的代码文件。matrix_bbknn.py: 独立于 Scanpy 的 BBKNN 实现,接受 PCA 矩阵和批次列表作为输入。
-
docs/: 包含项目的文档文件。
conf.py: Sphinx 文档生成器的配置文件。index.rst: 文档的主索引文件。
-
examples/: 包含项目的示例代码和 Jupyter Notebook 文件。
demo.ipynb: 主要演示 BBKNN 的使用。simulation.ipynb: 模拟数据上的 BBKNN 应用示例。
-
figures/: 包含项目文档中使用的图片文件。
figure1.png,figure2.png, ...: 文档中使用的图片文件。
-
.gitignore: Git 版本控制系统的忽略文件配置。
-
CHANGELOG.md: 项目更新日志。
-
LICENSE: 项目许可证文件。
-
MANIFEST.in: 打包项目时包含的文件列表。
-
README.md: 项目的主说明文件。
-
pyproject.toml: 项目配置文件,包含构建系统的要求和依赖。
2. 项目启动文件介绍
BBKNN 项目的启动文件主要是 bbknn.py,该文件包含了 BBKNN 算法的核心实现。启动文件的主要功能如下:
-
bbknn.bbknn(): 这是 BBKNN 算法的主要函数,用于计算批次平衡的 KNN 图。它可以直接在 Scanpy 工作流中使用,替代
scanpy.pp.neighbors()。 -
bbknn.ridge_regression(): 该函数用于在 BBKNN 之前执行岭回归,以改善批次效应的校正效果。
-
bbknn.matrix_bbknn(): 这是一个独立于 Scanpy 的 BBKNN 实现,接受 PCA 矩阵和批次列表作为输入,返回 KNN 图的距离和连接性矩阵。
3. 项目的配置文件介绍
BBKNN 项目的配置文件主要包括以下几个:
-
pyproject.toml: 该文件定义了项目的构建系统要求和依赖。它指定了项目所需的 Python 版本、依赖包等信息。
-
conf.py: 这是 Sphinx 文档生成器的配置文件,定义了文档生成过程中的一些配置选项,如文档主题、扩展插件等。
-
MANIFEST.in: 该文件定义了在打包项目时需要包含的文件列表,确保所有必要的文件都被包含在发布包中。
这些配置文件共同确保了 BBKNN 项目的正确构建、文档生成和发布。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C087
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00