BBKNN 项目教程
1. 项目目录结构及介绍
BBKNN 项目的目录结构如下:
bbknn/
├── bbknn/
│ ├── __init__.py
│ ├── bbknn.py
│ ├── ridge_regression.py
│ ├── matrix_bbknn.py
│ └── ...
├── docs/
│ ├── conf.py
│ ├── index.rst
│ └── ...
├── examples/
│ ├── demo.ipynb
│ ├── simulation.ipynb
│ └── ...
├── figures/
│ ├── figure1.png
│ ├── figure2.png
│ └── ...
├── .gitignore
├── CHANGELOG.md
├── LICENSE
├── MANIFEST.in
├── README.md
├── pyproject.toml
└── ...
目录结构介绍
-
bbknn/: 包含 BBKNN 项目的主要代码文件。
__init__.py: 初始化文件,使bbknn成为一个 Python 包。bbknn.py: 主要功能实现文件,包含 BBKNN 算法的核心代码。ridge_regression.py: 实现岭回归的代码文件。matrix_bbknn.py: 独立于 Scanpy 的 BBKNN 实现,接受 PCA 矩阵和批次列表作为输入。
-
docs/: 包含项目的文档文件。
conf.py: Sphinx 文档生成器的配置文件。index.rst: 文档的主索引文件。
-
examples/: 包含项目的示例代码和 Jupyter Notebook 文件。
demo.ipynb: 主要演示 BBKNN 的使用。simulation.ipynb: 模拟数据上的 BBKNN 应用示例。
-
figures/: 包含项目文档中使用的图片文件。
figure1.png,figure2.png, ...: 文档中使用的图片文件。
-
.gitignore: Git 版本控制系统的忽略文件配置。
-
CHANGELOG.md: 项目更新日志。
-
LICENSE: 项目许可证文件。
-
MANIFEST.in: 打包项目时包含的文件列表。
-
README.md: 项目的主说明文件。
-
pyproject.toml: 项目配置文件,包含构建系统的要求和依赖。
2. 项目启动文件介绍
BBKNN 项目的启动文件主要是 bbknn.py,该文件包含了 BBKNN 算法的核心实现。启动文件的主要功能如下:
-
bbknn.bbknn(): 这是 BBKNN 算法的主要函数,用于计算批次平衡的 KNN 图。它可以直接在 Scanpy 工作流中使用,替代
scanpy.pp.neighbors()。 -
bbknn.ridge_regression(): 该函数用于在 BBKNN 之前执行岭回归,以改善批次效应的校正效果。
-
bbknn.matrix_bbknn(): 这是一个独立于 Scanpy 的 BBKNN 实现,接受 PCA 矩阵和批次列表作为输入,返回 KNN 图的距离和连接性矩阵。
3. 项目的配置文件介绍
BBKNN 项目的配置文件主要包括以下几个:
-
pyproject.toml: 该文件定义了项目的构建系统要求和依赖。它指定了项目所需的 Python 版本、依赖包等信息。
-
conf.py: 这是 Sphinx 文档生成器的配置文件,定义了文档生成过程中的一些配置选项,如文档主题、扩展插件等。
-
MANIFEST.in: 该文件定义了在打包项目时需要包含的文件列表,确保所有必要的文件都被包含在发布包中。
这些配置文件共同确保了 BBKNN 项目的正确构建、文档生成和发布。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00