VOS 项目使用教程
2024-09-27 02:15:00作者:咎竹峻Karen
1. 项目目录结构及介绍
VOS 项目的目录结构如下:
vos/
├── classification/
│ └── CIFAR/
│ ├── train_virtual.py
│ └── train_virtual_dense.py
├── detection/
│ ├── train_net.py
│ └── train_net_gmm.py
├── plot_fig1/
├── LICENSE
├── README.md
├── bdd_coco_plot.py
├── convert_weight.py
├── metric_utils.py
├── requirements.txt
└── voc_coco_plot.py
目录结构介绍
- classification/: 包含用于分类任务的代码,特别是针对 CIFAR 数据集的训练脚本。
- CIFAR/: 包含训练虚拟异常合成的脚本。
train_virtual.py: 用于训练 WideResNet 模型的脚本。train_virtual_dense.py: 用于训练 DenseNet 模型的脚本。
- CIFAR/: 包含训练虚拟异常合成的脚本。
- detection/: 包含用于目标检测任务的代码。
train_net.py: 用于训练 Faster-RCNN 模型的脚本。train_net_gmm.py: 用于训练 VOS 模型的脚本。
- plot_fig1/: 包含用于生成图表的代码。
- LICENSE: 项目的许可证文件。
- README.md: 项目的介绍和使用说明。
- bdd_coco_plot.py: 用于 BDD 和 COCO 数据集的评估和可视化脚本。
- convert_weight.py: 用于转换模型权重的脚本。
- metric_utils.py: 用于计算评估指标的工具脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- voc_coco_plot.py: 用于 VOC 和 COCO 数据集的评估和可视化脚本。
2. 项目启动文件介绍
启动文件
- train_net.py: 用于训练 Faster-RCNN 模型的启动脚本。
- train_net_gmm.py: 用于训练 VOS 模型的启动脚本。
使用方法
训练 Faster-RCNN 模型
python train_net.py --dataset-dir path/to/dataset/dir --num-gpus 8 --config-file VOC-Detection/faster-rcnn/vanilla.yaml --random-seed 0 --resume
训练 VOS 模型
python train_net_gmm.py --dataset-dir path/to/dataset/dir --num-gpus 8 --config-file VOC-Detection/faster-rcnn/vos.yaml --random-seed 0 --resume
3. 项目配置文件介绍
配置文件
- config-file: 配置文件用于指定模型的训练参数和数据集路径。
配置文件示例
# VOC-Detection/faster-rcnn/vanilla.yaml
dataset-dir: path/to/dataset/dir
num-gpus: 8
random-seed: 0
resume: true
配置文件参数说明
dataset-dir: 数据集的存储路径。num-gpus: 使用的 GPU 数量。random-seed: 随机种子,用于确保实验的可重复性。resume: 是否从之前的检查点恢复训练。
通过以上配置文件,可以灵活地调整训练过程中的各项参数,以适应不同的实验需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.73 K
Ascend Extension for PyTorch
Python
332
396
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
166
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246