AngrCTF_FITM 项目使用教程
2024-09-17 14:46:53作者:殷蕙予
1. 项目目录结构及介绍
AngrCTF_FITM 项目的目录结构如下:
AngrCTF_FITM/
├── 笔记/
│ ├── 01/
│ ├── 02/
│ ├── 03/
│ └── ...
├── 源码/
│ ├── 01/
│ ├── 02/
│ ├── 03/
│ └── ...
├── 题目/
│ ├── 01/
│ ├── 02/
│ ├── 03/
│ └── ...
├── README.md
└── ...
目录介绍
- 笔记/:包含项目的学习笔记和文档,每个子目录对应不同的学习阶段或主题。
- 源码/:包含项目的源代码,每个子目录对应不同的题目或示例。
- 题目/:包含项目的题目文件,每个子目录对应不同的题目。
- README.md:项目的介绍文件,包含项目的基本信息和使用说明。
2. 项目的启动文件介绍
在 AngrCTF_FITM 项目中,启动文件通常是指用于运行和测试题目的 Python 脚本。每个题目目录下都会有一个或多个启动文件,用于加载和执行题目。
示例启动文件
以 01_angr_find 题目为例,启动文件可能如下:
import angr
import sys
def main():
path_to_binary = "题目/01/01_angr_find"
project = angr.Project(path_to_binary, auto_load_libs=False)
initial_state = project.factory.entry_state()
simulation = project.factory.simgr(initial_state)
print_good_address = 0x8048678
simulation.explore(find=print_good_address)
if simulation.found:
solution_state = simulation.found[0]
solution = solution_state.posix.dumps(sys.stdin.fileno())
print("[+] Success! Solution is: {}".format(solution.decode("utf-8")))
else:
raise Exception('Could not find the solution')
if __name__ == "__main__":
main()
启动文件功能
- 加载二进制文件:使用
angr.Project加载题目二进制文件。 - 初始化状态:创建初始状态
initial_state。 - 模拟执行:使用
simulation.explore方法探索程序路径,找到特定地址。 - 输出结果:如果找到解,输出解的内容。
3. 项目的配置文件介绍
在 AngrCTF_FITM 项目中,配置文件通常是指用于配置 Angr 环境和题目参数的文件。由于 Angr 是一个 Python 库,配置主要通过代码实现,而不是传统的配置文件。
示例配置
在启动文件中,配置主要体现在以下几个方面:
- 二进制文件路径:指定题目二进制文件的路径。
- 自动加载库:设置
auto_load_libs=False以避免自动加载外部库。 - 探索地址:指定需要探索的地址
print_good_address。
配置文件示例
虽然 AngrCTF_FITM 项目没有传统的配置文件,但可以通过 Python 脚本中的变量和参数来实现配置。例如:
# 配置二进制文件路径
path_to_binary = "题目/01/01_angr_find"
# 配置自动加载库
auto_load_libs = False
# 配置探索地址
print_good_address = 0x8048678
配置文件功能
- 路径配置:指定题目二进制文件的路径。
- 库加载配置:控制是否自动加载外部库。
- 探索地址配置:指定需要探索的程序地址。
通过以上配置,可以灵活地调整 Angr 的行为,以适应不同的题目和需求。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219