AngrCTF_FITM 项目使用教程
2024-09-17 18:56:41作者:殷蕙予
1. 项目目录结构及介绍
AngrCTF_FITM 项目的目录结构如下:
AngrCTF_FITM/
├── 笔记/
│   ├── 01/
│   ├── 02/
│   ├── 03/
│   └── ...
├── 源码/
│   ├── 01/
│   ├── 02/
│   ├── 03/
│   └── ...
├── 题目/
│   ├── 01/
│   ├── 02/
│   ├── 03/
│   └── ...
├── README.md
└── ...
目录介绍
- 笔记/:包含项目的学习笔记和文档,每个子目录对应不同的学习阶段或主题。
 - 源码/:包含项目的源代码,每个子目录对应不同的题目或示例。
 - 题目/:包含项目的题目文件,每个子目录对应不同的题目。
 - README.md:项目的介绍文件,包含项目的基本信息和使用说明。
 
2. 项目的启动文件介绍
在 AngrCTF_FITM 项目中,启动文件通常是指用于运行和测试题目的 Python 脚本。每个题目目录下都会有一个或多个启动文件,用于加载和执行题目。
示例启动文件
以 01_angr_find 题目为例,启动文件可能如下:
import angr
import sys
def main():
    path_to_binary = "题目/01/01_angr_find"
    project = angr.Project(path_to_binary, auto_load_libs=False)
    initial_state = project.factory.entry_state()
    simulation = project.factory.simgr(initial_state)
    print_good_address = 0x8048678
    simulation.explore(find=print_good_address)
    if simulation.found:
        solution_state = simulation.found[0]
        solution = solution_state.posix.dumps(sys.stdin.fileno())
        print("[+] Success! Solution is: {}".format(solution.decode("utf-8")))
    else:
        raise Exception('Could not find the solution')
if __name__ == "__main__":
    main()
启动文件功能
- 加载二进制文件:使用 
angr.Project加载题目二进制文件。 - 初始化状态:创建初始状态 
initial_state。 - 模拟执行:使用 
simulation.explore方法探索程序路径,找到特定地址。 - 输出结果:如果找到解,输出解的内容。
 
3. 项目的配置文件介绍
在 AngrCTF_FITM 项目中,配置文件通常是指用于配置 Angr 环境和题目参数的文件。由于 Angr 是一个 Python 库,配置主要通过代码实现,而不是传统的配置文件。
示例配置
在启动文件中,配置主要体现在以下几个方面:
- 二进制文件路径:指定题目二进制文件的路径。
 - 自动加载库:设置 
auto_load_libs=False以避免自动加载外部库。 - 探索地址:指定需要探索的地址 
print_good_address。 
配置文件示例
虽然 AngrCTF_FITM 项目没有传统的配置文件,但可以通过 Python 脚本中的变量和参数来实现配置。例如:
# 配置二进制文件路径
path_to_binary = "题目/01/01_angr_find"
# 配置自动加载库
auto_load_libs = False
# 配置探索地址
print_good_address = 0x8048678
配置文件功能
- 路径配置:指定题目二进制文件的路径。
 - 库加载配置:控制是否自动加载外部库。
 - 探索地址配置:指定需要探索的程序地址。
 
通过以上配置,可以灵活地调整 Angr 的行为,以适应不同的题目和需求。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445