AngrCTF_FITM 项目教程
2024-09-14 01:02:08作者:董斯意
1. 项目介绍
AngrCTF_FITM 是一个专注于使用 Angr 框架进行 CTF(Capture The Flag)竞赛的练习和教学项目。Angr 是一个强大的二进制分析框架,能够进行符号执行、动态分析和静态分析,广泛应用于逆向工程、漏洞挖掘和程序分析等领域。AngrCTF_FITM 项目通过一系列精心设计的 CTF 题目,帮助用户深入理解和掌握 Angr 的使用技巧。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.x 和 Angr 框架。你可以通过以下命令安装 Angr:
pip install angr
2.2 克隆项目
使用 Git 克隆 AngrCTF_FITM 项目到本地:
git clone https://github.com/ZERO-A-ONE/AngrCTF_FITM.git
cd AngrCTF_FITM
2.3 运行示例
项目中包含多个示例题目,每个题目都有对应的 Python 脚本用于自动化求解。以下是一个简单的示例脚本:
import angr
import claripy
def main():
# 加载二进制文件
project = angr.Project('examples/00_angr_find')
# 创建初始状态
initial_state = project.factory.entry_state()
# 创建模拟管理器
simulation = project.factory.simgr(initial_state)
# 定义成功地址
print_good_address = 0x8048678
# 探索路径
simulation.explore(find=print_good_address)
# 检查是否找到解
if simulation.found:
solution_state = simulation.found[0]
solution = solution_state.posix.dumps(0)
print("[+] Success! Solution is: {}".format(solution.decode("utf-8")))
else:
raise Exception('Could not find the solution')
if __name__ == "__main__":
main()
2.4 运行脚本
将上述脚本保存为 solve.py,然后在终端中运行:
python solve.py
3. 应用案例和最佳实践
3.1 符号化寄存器
在某些 CTF 题目中,程序会直接读取寄存器中的值进行校验。Angr 可以通过符号化寄存器来解决这类问题。以下是一个示例:
initial_state.regs.eax = claripy.BVS('eax', 32)
initial_state.regs.ebx = claripy.BVS('ebx', 32)
3.2 符号化栈
对于栈上的数据,Angr 同样可以进行符号化处理。以下是一个示例:
initial_state.stack_push(claripy.BVS('stack_var', 32))
3.3 符号化内存
对于内存中的数据,Angr 提供了 memory.store 方法进行符号化处理。以下是一个示例:
initial_state.memory.store(0x1000, claripy.BVS('mem_var', 32))
3.4 符号化文件系统
在某些题目中,程序会读取文件内容进行校验。Angr 可以通过符号化文件系统来解决这类问题。以下是一个示例:
sim_file = angr.storage.SimFile('example.txt', content=claripy.BVS('file_content', 64))
initial_state.fs.insert('example.txt', sim_file)
4. 典型生态项目
4.1 Angr 官方文档
Angr 官方提供了详细的文档和教程,帮助用户深入理解 Angr 的各项功能和使用方法。
4.2 CTFTime
CTFTime 是一个全球性的 CTF 竞赛信息平台,用户可以在上面找到各种 CTF 竞赛的信息和题目,适合与 Angr 结合进行练习。
4.3 Pwntools
Pwntools 是一个强大的 CTF 工具包,常与 Angr 结合使用,提供了一系列方便的工具和库,帮助用户快速开发和调试 CTF 题目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219