MLJAR-Supervised 1.1.4版本修复了scikit-learn兼容性警告
在使用MLJAR-Supervised进行自动化机器学习建模时,用户可能会遇到一个关于needs_threshold
和needs_proba
参数的FutureWarning警告。这个警告提示这些参数将在scikit-learn 1.6版本中被移除。
问题背景
在scikit-learn 1.4版本中,开发团队开始逐步淘汰一些旧的API设计。具体到这个问题,needs_threshold
和needs_proba
这两个参数被标记为过时(deprecated),并将在未来的1.6版本中完全移除。这是scikit-learn持续优化其API设计的一部分,旨在简化接口并提高一致性。
影响范围
这个警告会影响所有使用MLJAR-Supervised库进行模型训练和评估的用户,特别是那些依赖自定义评估指标或使用特定模型预测方法的场景。虽然警告不会立即影响功能,但如果不及时处理,当用户升级到scikit-learn 1.6或更高版本时,代码可能会中断。
解决方案
MLJAR-Supervised团队在1.1.4版本中解决了这个问题。解决方案的核心是遵循scikit-learn的新API设计规范,使用response_method
参数来替代旧的needs_threshold
和needs_proba
参数。
新的API设计提供了两种选择:
- 将
response_method
设置为None,让scikit-learn自动选择最合适的预测方法 - 显式地将
response_method
设置为'predict',明确指定使用模型的predict方法
这种改变不仅消除了警告,还使代码更加符合scikit-learn的未来发展方向,确保了长期的兼容性。
升级建议
对于使用MLJAR-Supervised的用户,建议尽快升级到1.1.4或更高版本。升级过程通常很简单,可以通过pip或conda等包管理工具完成:
pip install --upgrade mljar-supervised
升级后,原有的代码应该能够继续正常工作,而不再显示关于needs_threshold
和needs_proba
的警告信息。
技术意义
这个变更反映了机器学习生态系统的一个重要趋势:API设计的持续改进和标准化。通过采用更简洁、更一致的接口设计,scikit-learn和依赖它的库如MLJAR-Supervised能够提供更好的用户体验和更可靠的长期维护。
对于开发者来说,这个案例也提醒我们要密切关注依赖库的更新日志和弃用警告,及时调整代码以避免未来可能的兼容性问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









