Neural 3D Mesh Renderer 项目教程
2024-09-21 16:45:55作者:曹令琨Iris
1. 项目目录结构及介绍
neural_renderer/
├── examples/
│ ├── example1.py
│ ├── example2.py
│ ├── example3.py
│ └── example4.py
├── misc/
├── neural_renderer/
│ ├── __init__.py
│ ├── camera.py
│ ├── rasterizer.py
│ ├── renderer.py
│ └── ...
├── tests/
├── .gitignore
├── LICENSE
├── README.md
├── comparison_with_opendr.md
└── setup.py
目录结构介绍
- examples/: 包含四个示例脚本,分别演示了不同的功能,如从多个视角绘制对象、优化顶点、优化纹理和寻找相机参数。
- misc/: 包含一些杂项文件,具体内容未详细说明。
- neural_renderer/: 核心代码目录,包含渲染器的实现文件,如相机、栅格化器和渲染器等。
- tests/: 包含测试文件,用于验证代码的正确性。
- .gitignore: Git 忽略文件,指定哪些文件和目录不需要被版本控制。
- LICENSE: 项目许可证文件,采用 MIT 许可证。
- README.md: 项目说明文件,包含项目的基本信息和使用说明。
- comparison_with_opendr.md: 与 OpenDR 的比较文档。
- setup.py: 项目安装脚本,用于安装项目所需的依赖。
2. 项目的启动文件介绍
项目的主要启动文件位于 examples/ 目录下,包含以下四个示例脚本:
- example1.py: 演示如何从多个视角绘制对象。
- example2.py: 演示如何优化顶点,将茶壶的轮廓转换为矩形。
- example3.py: 演示如何优化纹理,使茶壶的颜色与参考图像匹配。
- example4.py: 演示如何通过梯度下降优化相机参数。
启动示例
要运行这些示例,可以使用以下命令:
python examples/example1.py
python examples/example2.py
python examples/example3.py
python examples/example4.py
3. 项目的配置文件介绍
项目中没有明确的配置文件,但可以通过修改 examples/ 目录下的示例脚本来调整参数和配置。例如,可以修改 example1.py 中的相机参数来改变视角,或者在 example2.py 中调整优化目标。
安装依赖
要安装项目的依赖,可以使用以下命令:
sudo python setup.py install
这将安装项目所需的所有依赖项,并使项目代码在系统中可用。
总结
Neural 3D Mesh Renderer 是一个用于三维网格渲染的开源项目,提供了多个示例脚本来演示其功能。通过修改示例脚本中的参数,用户可以自定义渲染效果和优化目标。项目的核心代码位于 neural_renderer/ 目录下,用户可以通过阅读和修改这些代码来深入理解渲染器的实现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671