LMDeploy多GPU推理InternVL2模型的内存优化实践
2025-06-03 17:48:30作者:戚魁泉Nursing
问题背景
在使用LMDeploy进行InternVL2-8B模型的多GPU推理时,开发者遇到了CUDA内存不足的问题。具体表现为在4张NVIDIA RTX 3090显卡(每卡24GB显存)上运行时出现OOM错误,而同样的配置在1B模型上可以正常运行。
技术分析
显存需求计算
InternVL2作为视觉语言多模态模型,相比纯语言模型需要额外的显存开销。根据测试数据,视觉模型部分相比基础模型需要额外约1.2GB的显存用于推理。在默认配置下,LMDeploy会预留20%的显存空间作为缓存,计算公式为:
剩余显存 = 2 * 1112 / 0.8 * 0.2 ≈ 556MB
这个数值明显小于视觉模型所需的1.2GB额外显存,因此导致了OOM错误。
多GPU通信问题
从错误日志中可以看到多个警告信息,表明GPU之间的peer access不可用。这会影响多GPU间的数据传输效率,虽然不直接导致OOM,但会降低整体性能。
解决方案
调整缓存配置
最直接的解决方案是调整cache_max_entry_count
参数,降低缓存占用的显存比例。建议尝试以下设置:
- 将
cache_max_entry_count
设置为0.5 - 如果仍有问题,可进一步降低到0.4
这样可以释放更多显存用于模型推理和视觉特征处理。
控制图像分块数量
InternVL2作为视觉语言模型,其显存占用与输入图像的分块(patch)数量直接相关。可以通过以下方式优化:
- 限制最大动态分块数量
- 适当降低输入图像分辨率
- 使用更高效的分块策略
硬件配置建议
对于8B规模的模型,建议:
- 使用显存更大的显卡(如A100 40GB/80GB)
- 确保GPU间有良好的互连(NVLink等)
- 考虑使用更高效的量化版本模型
实践建议
- 从小规模开始测试:先使用单卡或小batch size测试,逐步扩展
- 监控显存使用:使用nvidia-smi等工具实时监控显存占用
- 参数调优:根据实际使用情况微调缓存和分块参数
- 日志分析:仔细查看错误日志中的显存分配信息
总结
多模态大模型推理对显存要求较高,需要综合考虑模型参数、视觉处理、缓存机制等多方面因素。通过合理的参数配置和硬件选择,可以有效解决InternVL2等大模型在多GPU环境下的OOM问题。LMDeploy提供了灵活的配置选项,开发者可以根据实际需求进行调整优化。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React实验项目的分类修正2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp博客页面工作坊中的断言方法优化建议4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
969
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17