LMDeploy中获取模型输出Logits的技术解析
2025-06-04 04:31:18作者:宗隆裙
背景介绍
LMDeploy作为InternLM团队推出的高效推理工具链,在部署大语言模型方面表现出色。在实际应用中,开发者经常需要获取模型输出的原始logits而非经过softmax处理后的概率值,特别是在构建奖励模型或进行模型分析等场景下。
Logits获取需求分析
在LMDeploy中,用户最初只能通过pipe.get_logits方法获取输入序列的logits,但该方法存在线程安全问题且无法直接获取生成序列的logits。这限制了在以下场景的应用:
- 奖励模型构建:当需要扩展v_head权重时,直接获取logits更为方便
- 模型分析:需要分析模型生成过程中的置信度分布
- 高级采样策略:基于原始logits实现自定义采样逻辑
技术演进过程
LMDeploy团队在v0.7.0版本中对此功能进行了重要改进:
- 初始方案:提供基础的
get_logits方法,返回seq_len×vocab_size形状的张量 - 线程安全改进:解决了原始方案的线程安全问题
- 生成序列支持:新增对输出序列logits的获取能力
- 多模态扩展:支持包括InternVL2在内的视觉语言模型
实际应用示例
对于InternVL2-1B这样的多模态模型,现在可以通过以下方式获取生成文本的logits:
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image
# 初始化管道
model = 'OpenGVLab/InternVL2-1B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
# 处理图像并生成描述
image = load_image('tiger.jpeg')
response = pipe(('describe this image', image))
# 获取生成文本的logits
generation_logits = pipe.get_logits(response)
技术细节说明
- logits形状:返回的张量维度为[生成序列长度, 词表大小]
- 温度参数影响:当temperature=0时,实际采样退化为贪心搜索,此时top-1概率为1.0
- 与logprobs区别:logits是softmax前的原始输出,而logprobs是经过log-softmax处理后的结果
最佳实践建议
- 版本要求:确保使用v0.7.0或更高版本
- 性能考虑:批量获取logits时注意内存占用
- 应用场景:
- 模型微调监控
- 生成质量评估
- 自定义解码策略实现
未来展望
随着LMDeploy的持续发展,预计将在以下方面进一步优化:
- 更灵活的logits获取接口
- 对更多模型架构的支持
- 分布式场景下的优化
- 与训练框架的深度集成
通过本文介绍的技术方案,开发者可以更高效地在LMDeploy中实现基于logits的高级应用,充分发挥大语言模型的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217