首页
/ LMDeploy部署InternVL2 LoRA微调模型显存占用优化指南

LMDeploy部署InternVL2 LoRA微调模型显存占用优化指南

2025-06-04 08:00:36作者:谭伦延

在深度学习模型部署过程中,显存占用是一个常见的技术挑战。本文将以InternLM开源的LMDeploy工具为例,探讨如何优化InternVL2模型经过LoRA微调后的显存占用问题。

问题现象分析

当使用LMDeploy 0.5.2版本部署经过LoRA微调的InternVL2模型时,用户观察到显存占用快速攀升至60GB的异常情况。这种高显存占用不仅影响部署效率,也可能导致资源不足的部署环境无法正常运行模型。

技术背景

InternVL2是一个强大的视觉语言模型,而LoRA(Low-Rank Adaptation)是一种高效的微调技术,它通过在原始模型参数旁添加低秩矩阵来实现模型适配。这种技术虽然减少了训练时的参数量,但在推理部署时仍可能带来额外的显存开销。

显存优化方案

针对LMDeploy部署环境,我们可以通过以下方法优化显存占用:

  1. KV Cache配置调整:LMDeploy提供了cache_max_entry_count参数,用于控制键值缓存(KV Cache)的最大条目数。适当降低此值可以减少显存占用,但可能会影响长文本生成性能。

  2. 量化部署:考虑使用LMDeploy支持的INT4/INT8量化功能,这能显著降低模型显存需求。

  3. 批处理大小调整:减少同时处理的请求数量(batch size)可以线性降低显存占用。

  4. LoRA适配器优化:检查LoRA适配器的秩(rank)大小,过大的秩会导致不必要的显存开销。

实践建议

对于实际部署场景,建议采取以下步骤:

  1. 首先通过nvidia-smi或类似工具监控显存使用情况,确认显存占用的主要来源。

  2. 逐步调整cache_max_entry_count参数,观察显存变化和推理性能的平衡点。

  3. 考虑使用LMDeploy的量化工具对模型进行优化,这通常能带来最显著的显存节省。

  4. 如果部署环境显存确实有限,可以尝试减小LoRA的秩或完全合并LoRA权重到基础模型中。

总结

部署大型语言模型时的显存优化是一个系统工程。通过合理配置LMDeploy的参数,结合模型本身的优化手段,可以在保持模型性能的同时有效控制显存占用。对于InternVL2这类视觉语言大模型,特别需要注意KV Cache和LoRA适配器带来的额外显存开销。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
180
264
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60