LMDeploy部署InternVL2 LoRA微调模型显存占用优化指南
在深度学习模型部署过程中,显存占用是一个常见的技术挑战。本文将以InternLM开源的LMDeploy工具为例,探讨如何优化InternVL2模型经过LoRA微调后的显存占用问题。
问题现象分析
当使用LMDeploy 0.5.2版本部署经过LoRA微调的InternVL2模型时,用户观察到显存占用快速攀升至60GB的异常情况。这种高显存占用不仅影响部署效率,也可能导致资源不足的部署环境无法正常运行模型。
技术背景
InternVL2是一个强大的视觉语言模型,而LoRA(Low-Rank Adaptation)是一种高效的微调技术,它通过在原始模型参数旁添加低秩矩阵来实现模型适配。这种技术虽然减少了训练时的参数量,但在推理部署时仍可能带来额外的显存开销。
显存优化方案
针对LMDeploy部署环境,我们可以通过以下方法优化显存占用:
-
KV Cache配置调整:LMDeploy提供了
cache_max_entry_count参数,用于控制键值缓存(KV Cache)的最大条目数。适当降低此值可以减少显存占用,但可能会影响长文本生成性能。 -
量化部署:考虑使用LMDeploy支持的INT4/INT8量化功能,这能显著降低模型显存需求。
-
批处理大小调整:减少同时处理的请求数量(batch size)可以线性降低显存占用。
-
LoRA适配器优化:检查LoRA适配器的秩(rank)大小,过大的秩会导致不必要的显存开销。
实践建议
对于实际部署场景,建议采取以下步骤:
-
首先通过
nvidia-smi或类似工具监控显存使用情况,确认显存占用的主要来源。 -
逐步调整
cache_max_entry_count参数,观察显存变化和推理性能的平衡点。 -
考虑使用LMDeploy的量化工具对模型进行优化,这通常能带来最显著的显存节省。
-
如果部署环境显存确实有限,可以尝试减小LoRA的秩或完全合并LoRA权重到基础模型中。
总结
部署大型语言模型时的显存优化是一个系统工程。通过合理配置LMDeploy的参数,结合模型本身的优化手段,可以在保持模型性能的同时有效控制显存占用。对于InternVL2这类视觉语言大模型,特别需要注意KV Cache和LoRA适配器带来的额外显存开销。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00