LLMLingua项目中的Big Bench Hard提示压缩技术解析
在自然语言处理领域,提示工程对大型语言模型的性能表现至关重要。微软开源的LLMLingua项目提供了一种高效的提示压缩技术,本文重点解析其在Big Bench Hard(BBH)基准测试中的应用细节和技术实现。
核心压缩参数配置
LLMLingua对BBH的思维链(CoT)提示进行压缩时,采用了以下关键技术配置:
-
目标令牌控制:通过target_token参数设定预期保留的令牌数量,实际压缩结果会略低于设定值。例如在1-shot约束条件下,目标值设为约300时可实现269个令牌的实际压缩效果。
-
关键令牌保留:force_tokens参数设置为保留换行符和常见标点符号("\n,!,?,.,Q:,A:,So the answer is"),确保提示的语法结构和关键信息完整性。
-
数字处理:force_reserve_digit设为False,允许对数字内容进行压缩。
-
上下文级过滤:启用use_context_level_filter并设置context_level_target_token为target_token的两倍,这种设计能智能保留1-2个最具代表性的CoT示例。
技术实现特点
项目采用列表形式传入BBH的3个CoT示例提示,而非拼接为单个字符串。这种处理方式使得上下文级过滤器能够有效工作,根据语义重要性自动选择保留最相关的示例。
值得注意的是,压缩率(ratio)设置为0.33时,实际可能获得超过4倍的压缩效果。这种"超预期压缩"现象源于算法对冗余信息的智能识别和去除能力。
约束条件理解
项目中提到的"1-shot/half-shot约束"是指:
- 1-shot约束:保留完整的一个示例
- half-shot约束:保留部分示例内容
这种约束机制通过动态调整压缩强度,在保持提示有效性的同时最大化压缩效率。实际应用中,开发者需要根据目标令牌数适当调高target_token设定值,以补偿算法保守压缩的特性。
实践建议
对于希望复现BBH压缩效果的开发者,建议:
- 采用列表形式组织多个CoT示例
- 目标令牌数设置应比预期值高10-15%
- 优先启用上下文级过滤功能
- 保留关键标点和问答标记
LLMLingua的这种提示压缩技术显著提升了大型语言模型处理复杂任务时的效率,为资源受限环境下的模型部署提供了实用解决方案。通过精细的参数调控,开发者可以在提示简洁性和模型性能之间找到最佳平衡点。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00