LLMLingua项目中的Big Bench Hard提示压缩技术解析
在自然语言处理领域,提示工程对大型语言模型的性能表现至关重要。微软开源的LLMLingua项目提供了一种高效的提示压缩技术,本文重点解析其在Big Bench Hard(BBH)基准测试中的应用细节和技术实现。
核心压缩参数配置
LLMLingua对BBH的思维链(CoT)提示进行压缩时,采用了以下关键技术配置:
-
目标令牌控制:通过target_token参数设定预期保留的令牌数量,实际压缩结果会略低于设定值。例如在1-shot约束条件下,目标值设为约300时可实现269个令牌的实际压缩效果。
-
关键令牌保留:force_tokens参数设置为保留换行符和常见标点符号("\n,!,?,.,Q:,A:,So the answer is"),确保提示的语法结构和关键信息完整性。
-
数字处理:force_reserve_digit设为False,允许对数字内容进行压缩。
-
上下文级过滤:启用use_context_level_filter并设置context_level_target_token为target_token的两倍,这种设计能智能保留1-2个最具代表性的CoT示例。
技术实现特点
项目采用列表形式传入BBH的3个CoT示例提示,而非拼接为单个字符串。这种处理方式使得上下文级过滤器能够有效工作,根据语义重要性自动选择保留最相关的示例。
值得注意的是,压缩率(ratio)设置为0.33时,实际可能获得超过4倍的压缩效果。这种"超预期压缩"现象源于算法对冗余信息的智能识别和去除能力。
约束条件理解
项目中提到的"1-shot/half-shot约束"是指:
- 1-shot约束:保留完整的一个示例
- half-shot约束:保留部分示例内容
这种约束机制通过动态调整压缩强度,在保持提示有效性的同时最大化压缩效率。实际应用中,开发者需要根据目标令牌数适当调高target_token设定值,以补偿算法保守压缩的特性。
实践建议
对于希望复现BBH压缩效果的开发者,建议:
- 采用列表形式组织多个CoT示例
- 目标令牌数设置应比预期值高10-15%
- 优先启用上下文级过滤功能
- 保留关键标点和问答标记
LLMLingua的这种提示压缩技术显著提升了大型语言模型处理复杂任务时的效率,为资源受限环境下的模型部署提供了实用解决方案。通过精细的参数调控,开发者可以在提示简洁性和模型性能之间找到最佳平衡点。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









