LLMLingua-2压缩算法中的阈值计算机制解析
2025-06-09 09:18:34作者:庞队千Virginia
在自然语言处理领域,微软开源的LLMLingua项目提供了一种创新的提示词压缩技术。本文将深入分析其第二代版本(LLMLingua-2)中阈值计算的关键设计,特别是针对不同分词器对齐问题的解决方案。
背景与挑战
提示词压缩技术需要解决的核心矛盾是:如何在保持语义完整性的前提下,最大限度地减少实际消耗的计算资源。当使用类似GPT这样按token计费的商业API时,压缩效果必须基于目标模型的tokenizer进行精确评估。
关键技术实现
LLMLingua-2采用双分词器架构:
- 压缩模型分词器:用于计算文本中每个单词的保留概率
- 目标模型分词器(如OpenAI):用于精确计算实际消耗的token数量
在具体实现中,系统会先将文本通过压缩模型分词器处理为带有特殊前缀符号(▁)的单词序列。例如:
['▁The', '▁report', '▁of', '▁the', '▁Civil', ...]
概率分配机制
当计算保留阈值时,系统会:
- 将每个单词通过目标模型tokenizer进行二次分词
- 将单词级别的概率值分配给该单词对应的所有token
- 特别处理前缀符号▁产生的额外token
以单词"▁The"为例:
- 目标tokenizer将其拆分为3个token
- 单词概率会被复制3次分配给这些token
设计考量
这种看似冗余的设计实际上解决了几个关键问题:
- token数量对齐:确保压缩率计算基于实际消耗的token数量
- 长单词处理:防止因单个长单词占用过多token而破坏整体压缩比例
- 符号一致性:保留前缀符号虽然增加了少量token,但实验证明能提升最终效果
性能优化
值得注意的是,系统对标点符号采取了差异化处理:
- 不添加前缀符号
- 不进行概率复制 这种处理既保持了文本结构的完整性,又避免了不必要的token浪费
总结
LLMLingua-2通过精妙的多分词器协同机制,实现了提示词压缩效果与目标模型token消耗的精确对齐。这种设计虽然增加了实现复杂度,但显著提升了压缩方案在实际应用中的可靠性,为提示词优化领域提供了有价值的实践参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130