Tenstorrent TT-Metal v0.58.0-rc10 版本技术解析
Tenstorrent TT-Metal 是一个面向AI加速的高性能计算框架,专为Tenstorrent的AI处理器设计。该项目提供了从底层硬件抽象到高层模型支持的全栈解决方案,使开发者能够充分利用Tenstorrent硬件的高效计算能力。最新发布的v0.58.0-rc10版本带来了多项重要更新和优化,本文将深入解析这些技术改进。
核心架构优化
本次版本在系统架构层面进行了多项重要改进。首先移除了DispatchMemMap单例模式,将其所有权转移至MetalContext,这一改动显著提升了系统的模块化程度和线程安全性。同时,项目团队彻底移除了遗留的异步模式API,简化了代码库并提高了维护性。
在设备初始化方面,新增了对6U设备2D Torus拓扑的支持,并修复了1D Fabric设备初始化时缺失的NOC选择优化。这些改进为大规模AI模型部署提供了更好的硬件支持基础。
性能提升与优化
性能优化是本版本的重点之一。DRAM预取器新增了性能模式支持,可以针对不同工作负载特点进行优化配置。针对Llama模型的SDPA解码阶段,团队实现了16x32瓦片布局优化并移除了不必要的copy_blocks操作,显著提升了处理效率。
特别值得注意的是,项目团队为YOLOv8s_world和YOLOv8x模型添加了完整的trace支持,使这些计算机视觉模型能够在Tenstorrent硬件上获得最佳性能表现。同时,针对YOLOv9c模型的trace性能调优工作也已取得阶段性成果。
新功能与算子扩展
在算子支持方面,本次更新带来了多项重要扩展:
- 新增了ttnn.experimental.broadcast_to操作支持
- 实现了ttnn.stack操作的原生支持
- 为ttnn.upsample的nearest模式添加了对非均匀分片的支持
- 扩展了argmax操作的多核支持,使其能够处理任意维度和形状的输入
- 为ttnn.add操作添加了uint16数据类型支持
这些新功能的加入大大增强了框架的适用性和灵活性,使开发者能够应对更复杂的AI模型需求。
系统稳定性与可靠性
在系统稳定性方面,本版本包含了多项重要修复:
- 修复了RISCV_SOFT_RESET_0_BRISC值的移位问题
- 解决了AllGatherAsyncMinimal的段错误问题
- 修复了ElfFile::Impl构造函数中的悬空引用问题
- 为Resnet50模型添加了稳定性测试脚本
此外,团队还新增了一个system_health测试二进制文件,专门用于6U/T3K设备的系统健康检查,进一步提升了大规模部署的可靠性。
开发者体验改进
在开发者体验方面,本次更新包含了多项便利性改进:
- 新增了ProgramDescriptor结构,为未来的TTNN通用操作提供支持
- 实现了测试代码的去重和模块化重构
- 改进了设备性能数据的收集和分析能力
- 添加了FORCE_PUSH_TO_TRACY选项,方便性能分析
这些改进使开发者能够更高效地开发和调试基于Tenstorrent硬件的AI应用。
总结
Tenstorrent TT-Metal v0.58.0-rc10版本在架构优化、性能提升、功能扩展和稳定性改进等方面都取得了显著进展。这些改进不仅增强了框架的核心能力,也为AI开发者提供了更强大、更灵活的工具集。随着对YOLO系列模型支持的不断完善和对Llama模型性能的持续优化,Tenstorrent硬件在计算机视觉和自然语言处理领域的应用前景将更加广阔。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0332- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









