NeuralForecast 中自定义优化器的使用指南
2025-06-24 16:35:31作者:温艾琴Wonderful
概述
在时间序列预测领域,NeuralForecast 是一个基于 PyTorch 的强大深度学习库。本文将详细介绍如何在该框架中使用自定义优化器,特别是针对那些希望超越默认 Adam 优化器的用户。
默认优化器配置
NeuralForecast 目前默认使用 Adam 优化器进行模型训练,这是基于大多数相关研究论文的选择。在底层实现中,优化器配置位于 _base_windows.py 文件的 configure_optimizers 方法中,其中包含了优化器和学习率调度器的初始化代码。
自定义优化器的实现方法
虽然当前版本没有直接提供修改优化器的接口,但开发者可以通过以下两种方式实现自定义优化:
-
直接修改源码:用户可以克隆项目仓库,手动修改
configure_optimizers方法中的优化器配置部分,替换为所需的优化器类。 -
等待官方更新:根据开发团队的计划,未来版本将会增加优化器参数选项,允许用户直接传入自定义的优化器对象。
技术实现细节
在 PyTorch 框架下,优化器的替换本质上涉及以下几个关键点:
- 优化器类的选择(如 SGD、RMSprop 等)
- 学习率的设置
- 可能需要的额外参数(如动量系数等)
一个典型的优化器替换示例是将 Adam 替换为 SGD,这需要调整学习率等超参数以获得最佳性能。
学习率调度器的考量
值得注意的是,优化器的选择往往与学习率调度策略密切相关。当前实现中包含了一个 StepLR 调度器,当用户自定义优化器时,也需要考虑是否需要相应调整调度策略。
最佳实践建议
对于希望尝试不同优化器的用户,建议:
- 从小的学习率开始测试
- 监控训练过程中的损失变化
- 对不同优化器进行系统性的比较
- 注意不同模型架构可能对优化器选择敏感
未来发展方向
根据开发团队的规划,未来的版本更新可能会包含:
- 更灵活的优化器配置接口
- 支持自定义学习率调度器
- 提供更多优化器选择的基准测试结果
总结
虽然当前 NeuralForecast 默认使用 Adam 优化器,但通过源码修改或等待未来版本更新,用户可以灵活地尝试不同的优化策略。理解优化器的工作原理和适用场景,将有助于开发者在时间序列预测任务中获得更好的模型性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134