NeuralForecast中的滚动交叉验证与模型微调实践
引言
在时间序列预测领域,滚动交叉验证是一种常用的评估模型性能的技术。本文将深入探讨如何在NeuralForecast框架中实现滚动交叉验证,并解决模型微调过程中的关键问题。
滚动交叉验证的基本概念
滚动交叉验证(Rolling Cross-Validation)是一种时间序列特有的验证方法,它通过逐步移动训练窗口和验证窗口来评估模型性能。这种方法特别适合评估模型在时间序列数据上的泛化能力。
NeuralForecast中的实现方式
在NeuralForecast中,实现滚动交叉验证不需要手动编写循环代码。框架提供了内置的cross_validation方法,通过设置适当的参数即可实现:
from neuralforecast import NeuralForecast
from neuralforecast.models import NBEATS
# 初始化模型
model = NBEATS(input_size=24, h=12)
# 创建NeuralForecast实例
nf = NeuralForecast(models=[model], freq='D')
# 执行滚动交叉验证
cv_results = nf.cross_validation(
df=data,
val_size=12,
test_size=12,
n_windows=5,
refit=True,
use_init_models=False
)
关键参数解析
-
refit参数:当设置为True时,模型会在每个窗口重新训练,但会保留之前学到的知识。
-
use_init_models参数:设置为False可以确保模型不会从初始状态开始训练,而是基于之前的状态继续学习。
模型微调的最佳实践
-
参数初始化:NeuralForecast默认不会在每次
fit()调用时重新初始化模型参数,这保证了知识的连续性。 -
数据变化处理:即使
unique_id和时间戳ds发生变化,模型仍会基于已有参数继续训练,而不是从头开始。 -
性能考量:对于大型数据集,建议适当调整学习率和训练周期,以避免过拟合或欠拟合。
常见问题解决方案
-
内存管理:长时间运行的滚动验证可能会消耗大量内存,建议定期保存中间结果。
-
收敛监控:实现自定义回调函数来监控模型在每个窗口的表现,及时调整超参数。
-
异构数据处理:当不同窗口的数据分布差异较大时,考虑使用自适应归一化技术。
结论
NeuralForecast提供了强大而灵活的工具来实现时间序列的滚动交叉验证。通过合理配置参数,研究人员和工程师可以有效地评估模型性能,同时保持模型知识的连续性。理解这些机制对于构建稳健的时间序列预测系统至关重要。
对于更复杂的场景,建议深入研究NeuralForecast的源代码,特别是训练循环和参数更新逻辑部分,以获得更精细的控制能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00