Elasticsearch-Py中KNN搜索与inner_hits参数的正确使用方式
2025-06-14 08:08:36作者:卓艾滢Kingsley
背景介绍
在使用Elasticsearch进行向量相似度搜索时,KNN(K-Nearest Neighbors)搜索是一个常用功能。当向量数据存储在嵌套文档中时,我们往往需要获取嵌套文档中的特定字段作为搜索结果的一部分。这时就需要使用inner_hits参数。
常见误区
很多开发者会直接使用elasticsearch-py客户端提供的knn_search()方法,但这个方法实际上是基于已被弃用的_knn_search API。更重要的是,knn_search()方法并不支持inner_hits参数,这会导致开发者在使用嵌套文档向量搜索时遇到困难。
正确使用方法
实际上,我们应该使用更通用的search()方法,并将KNN搜索作为其参数之一。search()方法完全支持KNN搜索功能,包括inner_hits参数。以下是正确使用方式的示例:
resp = client.search(
index="passage_vectors",
fields=[
"creation_time",
"full_text"
],
source=False,
knn={
"query_vector": [0.45, 45],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2,
"inner_hits": {
"_source": False,
"fields": ["paragraph.text"],
"size": 1
}
},
)
参数说明
- query_vector: 查询向量
- field: 存储向量的字段名
- k: 返回的最相似文档数量
- num_candidates: 候选文档数量
- inner_hits: 用于获取嵌套文档中的特定字段
- _source: 是否返回完整文档
- fields: 指定返回的字段
- size: 每个嵌套文档返回的结果数量
最佳实践
- 避免使用已被弃用的_knn_search API
- 对于嵌套文档的向量搜索,务必使用inner_hits参数
- 合理设置num_candidates参数以平衡搜索质量和性能
- 使用fields参数而非_source可以减少网络传输量
通过正确使用search()方法配合knn参数,开发者可以充分利用Elasticsearch的向量搜索能力,包括处理嵌套文档等复杂场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.65 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
298
347
一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
116
21
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.3 K
722
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1