GLM-4多模态模型运行错误分析与解决方案
2025-06-04 11:35:48作者:邬祺芯Juliet
问题背景
在使用GLM-4项目的composite_demo运行多模态模型时,用户在上传图片进行识别时遇到了两个主要错误。这些错误影响了模型的正常功能实现,特别是与视觉处理相关的部分。
错误现象分析
错误1:张量视图不兼容问题
核心错误信息显示在visual.py文件的第69行,具体表现为:
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
这个错误发生在视觉处理模块的forward方法中,当尝试使用view()方法改变张量形状时,由于内存不连续导致操作失败。PyTorch中view()方法要求张量在内存中是连续的,而transpose操作通常会破坏这种连续性。
错误2:队列空异常
第二个错误表现为队列空异常:
_queue.Empty
这个错误通常发生在流式生成过程中,当生成器未能正确产生输出时,消费者线程从空队列中获取数据导致的。
技术原理
在多模态模型处理中,视觉特征提取是关键步骤。GLM-4v模型通过视觉Transformer处理输入图像,将其转换为适合语言模型处理的视觉特征。错误发生在视觉Transformer的注意力机制输出处理阶段,具体是在将注意力输出转换为密集表示时。
PyTorch中view()和reshape()的区别:
- view()要求张量在内存中是连续的,操作更快但不安全
- reshape()会自动处理内存连续性,更安全但可能有轻微性能损失
解决方案
方法一:修改visual.py源码
- 定位到huggingface缓存目录下的visual.py文件
- 找到第69行左右的代码:
output = self.dense(out.transpose(1, 2).view(B, L, -1))
- 修改为:
output = self.dense(out.transpose(1, 2).reshape(B, L, -1))
方法二:更新模型文件
从huggingface更新以下文件可以彻底解决问题:
- visual.py
- generation_config.json
更新后这些文件会包含官方修复后的代码,确保视觉处理的稳定性。
预防措施
- 确保使用最新版本的模型文件
- 在开发环境中保持PyTorch和CUDA版本的兼容性
- 对于涉及张量形状变换的操作,优先考虑使用reshape()而非view()
- 在多模态应用中,特别注意图像预处理和特征提取环节的稳定性
总结
GLM-4多模态模型在视觉处理环节的张量操作问题是一个典型的内存连续性错误。通过理解PyTorch张量操作的底层原理,开发者可以灵活选择view()或reshape()方法。官方已通过更新模型文件解决了这一问题,用户只需确保使用最新版本即可避免此类错误。
对于深度学习开发者而言,这类问题的解决不仅需要了解API的使用,还需要深入理解框架底层的张量存储机制,这有助于在开发过程中做出更合理的技术选型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1