Fast Map Matching (FMM) 开源项目教程
2024-09-26 07:43:32作者:宣聪麟
1. 项目介绍
Fast Map Matching (FMM) 是一个开源的C++框架,专注于解决将噪声GPS数据匹配到道路网络的问题。FMM 结合了隐马尔可夫模型和预计算技术,旨在提供高效且可扩展的解决方案。该项目支持多种数据格式,包括OpenStreetMap和ESRI shapefile,并提供了Python和C++的API,适用于命令行、Jupyter笔记本和Web应用。
主要特点
- 高性能:使用Rtree、优化路由和并行计算(OpenMP)实现高性能。
- Python API:支持Jupyter笔记本和Web应用。
- 可扩展性:能够处理数百万GPS点和道路边缘。
- 多数据格式支持:支持多种数据格式,如OpenStreetMap、ESRI shapefile等。
- 详细匹配信息:提供路径、几何、匹配边缘、GPS误差等详细信息。
- 多算法支持:支持FMM和STMATCH算法。
- 平台支持:支持Linux、macOS和Windows(Cygwin环境)。
2. 项目快速启动
安装要求
- C++编译器支持c++11和OpenMP
- CMake >= 3.5
- GDAL >= 2.2
- Boost Graph >= 1.54.0
- Boost Geometry >= 1.54.0
- Boost Serialization >= 1.54.0
- Libosmium(可选)
- swig(用于Python绑定)
安装步骤
Ubuntu平台
-
更新ppa以安装GDAL:
sudo add-apt-repository ppa:ubuntugis/ppa sudo apt-get -q update -
安装所有依赖项:
sudo apt-get install libboost-dev libboost-serialization-dev \ gdal-bin libgdal-dev make cmake libbz2-dev libexpat1-dev swig python-dev -
构建并安装程序:
mkdir build cd build cmake .. make -j4 sudo make install
验证安装
-
运行命令行地图匹配:
fmm你应该看到以下输出:
------------ Fast map matching (FMM) ------------ ------------ Author: Can Yang ------------ ------------ Version: 2020.01.31 ------------ ------------ Applicaton: fmm ------------ -
运行Python脚本验证Python绑定:
cd ../example/python python fmm_test.py
3. 应用案例和最佳实践
应用案例
- 交通分析:使用FMM进行交通流量分析和路径规划。
- 物流优化:在物流行业中,使用FMM优化配送路线。
- 地理信息系统:在GIS应用中,使用FMM进行地图匹配和路径分析。
最佳实践
- 数据预处理:确保GPS数据和道路网络数据的格式正确。
- 参数调优:根据具体应用场景调整候选点数量、搜索半径和GPS误差等参数。
- 并行计算:利用OpenMP进行并行计算,提高处理速度。
4. 典型生态项目
- OpenStreetMap:FMM支持OpenStreetMap数据格式,可以与OSM生态系统无缝集成。
- GDAL:FMM使用GDAL进行数据输入输出,支持多种地理数据格式。
- Jupyter Notebook:FMM提供了Python API,可以在Jupyter Notebook中进行交互式地图匹配。
- Web应用:FMM可以集成到Web应用中,提供在线地图匹配服务。
通过以上模块的介绍,您可以快速了解并开始使用Fast Map Matching (FMM) 开源项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350