Fast Map Matching (FMM) 开源项目教程
2024-09-26 00:50:17作者:宣聪麟
1. 项目介绍
Fast Map Matching (FMM) 是一个开源的C++框架,专注于解决将噪声GPS数据匹配到道路网络的问题。FMM 结合了隐马尔可夫模型和预计算技术,旨在提供高效且可扩展的解决方案。该项目支持多种数据格式,包括OpenStreetMap和ESRI shapefile,并提供了Python和C++的API,适用于命令行、Jupyter笔记本和Web应用。
主要特点
- 高性能:使用Rtree、优化路由和并行计算(OpenMP)实现高性能。
- Python API:支持Jupyter笔记本和Web应用。
- 可扩展性:能够处理数百万GPS点和道路边缘。
- 多数据格式支持:支持多种数据格式,如OpenStreetMap、ESRI shapefile等。
- 详细匹配信息:提供路径、几何、匹配边缘、GPS误差等详细信息。
- 多算法支持:支持FMM和STMATCH算法。
- 平台支持:支持Linux、macOS和Windows(Cygwin环境)。
2. 项目快速启动
安装要求
- C++编译器支持c++11和OpenMP
- CMake >= 3.5
- GDAL >= 2.2
- Boost Graph >= 1.54.0
- Boost Geometry >= 1.54.0
- Boost Serialization >= 1.54.0
- Libosmium(可选)
- swig(用于Python绑定)
安装步骤
Ubuntu平台
-
更新ppa以安装GDAL:
sudo add-apt-repository ppa:ubuntugis/ppa sudo apt-get -q update
-
安装所有依赖项:
sudo apt-get install libboost-dev libboost-serialization-dev \ gdal-bin libgdal-dev make cmake libbz2-dev libexpat1-dev swig python-dev
-
构建并安装程序:
mkdir build cd build cmake .. make -j4 sudo make install
验证安装
-
运行命令行地图匹配:
fmm
你应该看到以下输出:
------------ Fast map matching (FMM) ------------ ------------ Author: Can Yang ------------ ------------ Version: 2020.01.31 ------------ ------------ Applicaton: fmm ------------
-
运行Python脚本验证Python绑定:
cd ../example/python python fmm_test.py
3. 应用案例和最佳实践
应用案例
- 交通分析:使用FMM进行交通流量分析和路径规划。
- 物流优化:在物流行业中,使用FMM优化配送路线。
- 地理信息系统:在GIS应用中,使用FMM进行地图匹配和路径分析。
最佳实践
- 数据预处理:确保GPS数据和道路网络数据的格式正确。
- 参数调优:根据具体应用场景调整候选点数量、搜索半径和GPS误差等参数。
- 并行计算:利用OpenMP进行并行计算,提高处理速度。
4. 典型生态项目
- OpenStreetMap:FMM支持OpenStreetMap数据格式,可以与OSM生态系统无缝集成。
- GDAL:FMM使用GDAL进行数据输入输出,支持多种地理数据格式。
- Jupyter Notebook:FMM提供了Python API,可以在Jupyter Notebook中进行交互式地图匹配。
- Web应用:FMM可以集成到Web应用中,提供在线地图匹配服务。
通过以上模块的介绍,您可以快速了解并开始使用Fast Map Matching (FMM) 开源项目。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5