Fast Map Matching (FMM) 开源项目教程
2024-09-26 17:34:27作者:宣聪麟
1. 项目介绍
Fast Map Matching (FMM) 是一个开源的C++框架,专注于解决将噪声GPS数据匹配到道路网络的问题。FMM 结合了隐马尔可夫模型和预计算技术,旨在提供高效且可扩展的解决方案。该项目支持多种数据格式,包括OpenStreetMap和ESRI shapefile,并提供了Python和C++的API,适用于命令行、Jupyter笔记本和Web应用。
主要特点
- 高性能:使用Rtree、优化路由和并行计算(OpenMP)实现高性能。
- Python API:支持Jupyter笔记本和Web应用。
- 可扩展性:能够处理数百万GPS点和道路边缘。
- 多数据格式支持:支持多种数据格式,如OpenStreetMap、ESRI shapefile等。
- 详细匹配信息:提供路径、几何、匹配边缘、GPS误差等详细信息。
- 多算法支持:支持FMM和STMATCH算法。
- 平台支持:支持Linux、macOS和Windows(Cygwin环境)。
2. 项目快速启动
安装要求
- C++编译器支持c++11和OpenMP
- CMake >= 3.5
- GDAL >= 2.2
- Boost Graph >= 1.54.0
- Boost Geometry >= 1.54.0
- Boost Serialization >= 1.54.0
- Libosmium(可选)
- swig(用于Python绑定)
安装步骤
Ubuntu平台
-
更新ppa以安装GDAL:
sudo add-apt-repository ppa:ubuntugis/ppa sudo apt-get -q update
-
安装所有依赖项:
sudo apt-get install libboost-dev libboost-serialization-dev \ gdal-bin libgdal-dev make cmake libbz2-dev libexpat1-dev swig python-dev
-
构建并安装程序:
mkdir build cd build cmake .. make -j4 sudo make install
验证安装
-
运行命令行地图匹配:
fmm
你应该看到以下输出:
------------ Fast map matching (FMM) ------------ ------------ Author: Can Yang ------------ ------------ Version: 2020.01.31 ------------ ------------ Applicaton: fmm ------------
-
运行Python脚本验证Python绑定:
cd ../example/python python fmm_test.py
3. 应用案例和最佳实践
应用案例
- 交通分析:使用FMM进行交通流量分析和路径规划。
- 物流优化:在物流行业中,使用FMM优化配送路线。
- 地理信息系统:在GIS应用中,使用FMM进行地图匹配和路径分析。
最佳实践
- 数据预处理:确保GPS数据和道路网络数据的格式正确。
- 参数调优:根据具体应用场景调整候选点数量、搜索半径和GPS误差等参数。
- 并行计算:利用OpenMP进行并行计算,提高处理速度。
4. 典型生态项目
- OpenStreetMap:FMM支持OpenStreetMap数据格式,可以与OSM生态系统无缝集成。
- GDAL:FMM使用GDAL进行数据输入输出,支持多种地理数据格式。
- Jupyter Notebook:FMM提供了Python API,可以在Jupyter Notebook中进行交互式地图匹配。
- Web应用:FMM可以集成到Web应用中,提供在线地图匹配服务。
通过以上模块的介绍,您可以快速了解并开始使用Fast Map Matching (FMM) 开源项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K