Fast Map Matching (FMM) 开源项目教程
2024-09-26 07:43:32作者:宣聪麟
1. 项目介绍
Fast Map Matching (FMM) 是一个开源的C++框架,专注于解决将噪声GPS数据匹配到道路网络的问题。FMM 结合了隐马尔可夫模型和预计算技术,旨在提供高效且可扩展的解决方案。该项目支持多种数据格式,包括OpenStreetMap和ESRI shapefile,并提供了Python和C++的API,适用于命令行、Jupyter笔记本和Web应用。
主要特点
- 高性能:使用Rtree、优化路由和并行计算(OpenMP)实现高性能。
- Python API:支持Jupyter笔记本和Web应用。
- 可扩展性:能够处理数百万GPS点和道路边缘。
- 多数据格式支持:支持多种数据格式,如OpenStreetMap、ESRI shapefile等。
- 详细匹配信息:提供路径、几何、匹配边缘、GPS误差等详细信息。
- 多算法支持:支持FMM和STMATCH算法。
- 平台支持:支持Linux、macOS和Windows(Cygwin环境)。
2. 项目快速启动
安装要求
- C++编译器支持c++11和OpenMP
- CMake >= 3.5
- GDAL >= 2.2
- Boost Graph >= 1.54.0
- Boost Geometry >= 1.54.0
- Boost Serialization >= 1.54.0
- Libosmium(可选)
- swig(用于Python绑定)
安装步骤
Ubuntu平台
-
更新ppa以安装GDAL:
sudo add-apt-repository ppa:ubuntugis/ppa sudo apt-get -q update -
安装所有依赖项:
sudo apt-get install libboost-dev libboost-serialization-dev \ gdal-bin libgdal-dev make cmake libbz2-dev libexpat1-dev swig python-dev -
构建并安装程序:
mkdir build cd build cmake .. make -j4 sudo make install
验证安装
-
运行命令行地图匹配:
fmm你应该看到以下输出:
------------ Fast map matching (FMM) ------------ ------------ Author: Can Yang ------------ ------------ Version: 2020.01.31 ------------ ------------ Applicaton: fmm ------------ -
运行Python脚本验证Python绑定:
cd ../example/python python fmm_test.py
3. 应用案例和最佳实践
应用案例
- 交通分析:使用FMM进行交通流量分析和路径规划。
- 物流优化:在物流行业中,使用FMM优化配送路线。
- 地理信息系统:在GIS应用中,使用FMM进行地图匹配和路径分析。
最佳实践
- 数据预处理:确保GPS数据和道路网络数据的格式正确。
- 参数调优:根据具体应用场景调整候选点数量、搜索半径和GPS误差等参数。
- 并行计算:利用OpenMP进行并行计算,提高处理速度。
4. 典型生态项目
- OpenStreetMap:FMM支持OpenStreetMap数据格式,可以与OSM生态系统无缝集成。
- GDAL:FMM使用GDAL进行数据输入输出,支持多种地理数据格式。
- Jupyter Notebook:FMM提供了Python API,可以在Jupyter Notebook中进行交互式地图匹配。
- Web应用:FMM可以集成到Web应用中,提供在线地图匹配服务。
通过以上模块的介绍,您可以快速了解并开始使用Fast Map Matching (FMM) 开源项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249