PyBaseball 项目教程
2024-09-13 20:38:52作者:瞿蔚英Wynne
1. 项目介绍
1.1 项目概述
PyBaseball 是一个用于棒球数据分析的 Python 包。它可以从 Baseball Reference、Baseball Savant 和 FanGraphs 等网站抓取数据,使用户无需手动下载数据即可进行分析。PyBaseball 提供了多种功能,包括获取 Statcast 数据、投手和击球手的统计数据、球队记录、奖项数据等。数据可以在单个投球级别或按赛季和自定义时间段进行聚合。
1.2 主要功能
- Statcast 数据:获取 MLB 的 Statcast 系统中的高级指标数据。
- 投手统计数据:获取投手在多个赛季、单个赛季或特定时间段内的统计数据。
- 击球手统计数据:获取击球手在赛季或特定时间段内的统计数据。
- 球队记录:获取球队的赛季比赛结果和赛程。
- 奖项数据:获取各种奖项的获奖数据。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 环境。然后,你可以通过 pip 安装 PyBaseball:
pip install pybaseball
或者从 GitHub 仓库安装(可能包含最新的更新):
git clone https://github.com/jldbc/pybaseball.git
cd pybaseball
pip install -e .
2.2 基本使用
以下是一个简单的示例,展示如何使用 PyBaseball 获取 Statcast 数据:
from pybaseball import statcast
# 获取 2017-06-24 到 2017-06-27 之间的 Statcast 数据
data = statcast(start_dt='2017-06-24', end_dt='2017-06-27')
# 查看前几行数据
print(data.head())
3. 应用案例和最佳实践
3.1 应用案例
PyBaseball 可以用于多种棒球数据分析任务,例如:
- 球员表现分析:通过 Statcast 数据分析球员的击球和投球表现。
- 球队策略分析:分析球队在不同赛季的策略变化和效果。
- 历史数据研究:研究棒球历史上的经典比赛和球员表现。
3.2 最佳实践
- 数据缓存:为了提高数据获取速度,建议启用本地数据缓存。
- 多线程处理:在处理大量数据时,可以使用多线程来加速数据抓取。
- 数据清洗:在使用数据前,进行必要的数据清洗和预处理。
4. 典型生态项目
4.1 相关项目
- baseballr:一个用于棒球数据分析的 R 包,提供了类似的功能。
- Chadwick Bureau:提供棒球历史数据的公共数据库。
- Baseball Reference:一个提供棒球统计数据和历史记录的网站。
4.2 集成与扩展
PyBaseball 可以与其他数据分析工具(如 Pandas、NumPy)和可视化工具(如 Matplotlib、Seaborn)结合使用,以进行更复杂的数据分析和可视化。
通过本教程,你应该已经掌握了 PyBaseball 的基本使用方法和一些高级功能。希望你能利用这个强大的工具进行更多有趣的棒球数据分析!
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
235
2.34 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
80

暂无简介
Dart
537
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
994
588

仓颉编程语言测试用例。
Cangjie
34
64

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
650