Scikit-Learn教程:特征提取技术详解
2025-06-07 11:30:25作者:平淮齐Percy
特征提取的重要性
在机器学习项目中,原始数据往往不是算法可以直接处理的理想格式。特征提取是将原始数据转换为机器学习算法能够理解的数值特征的过程,这是数据预处理中至关重要的环节。
特征提取的主要作用包括:
- 将非数值数据转换为数值表示
- 降低数据维度,提高计算效率
- 提取更有意义的特征表示
- 改善模型的性能表现
Scikit-Learn中的特征提取工具
Scikit-Learn提供了sklearn.feature_extraction模块,包含多种特征提取方法,适用于文本、图像等不同类型的数据。
字典数据向量化(DictVectorizer)
当数据以Python字典形式存储时,DictVectorizer可以将其转换为适合机器学习的NumPy数组格式。它还能自动处理分类变量,将其转换为one-hot编码。
from sklearn.feature_extraction import DictVectorizer
# 创建字典数组
measurements = [
{'city': 'Dubai', 'temperature': 33.},
{'city': 'London', 'temperature': 12.},
{'city': 'San Francisco', 'temperature': 18.},
]
vec = DictVectorizer()
vec.fit_transform(measurements).toarray()
输出结果:
array([[ 1., 0., 0., 33.],
[ 0., 1., 0., 12.],
[ 0., 0., 1., 18.]])
可以看到,城市名称被自动转换为one-hot编码,而温度值保持不变。
特征哈希(FeatureHasher)
特征哈希是一种高效的特征提取技术,特别适合处理高维稀疏数据。它通过哈希函数将特征映射到固定维度的向量空间。
from sklearn.feature_extraction import FeatureHasher
data = [
{'dog': -1, 'cat': 2, 'elephant': 4},
{'dog': 2, 'run': 5, 'cat':-7}
]
h = FeatureHasher(n_features=4)
h.transform(data).toarray()
输出示例:
array([[ 0., 1., -4., 2.],
[-5., -2., 0., -7.]])
特征哈希的优点包括:
- 内存效率高
- 处理速度快
- 适合在线学习场景
- 可以处理未见过的特征
文本特征提取
文本数据需要特殊处理才能用于机器学习算法。Scikit-Learn提供了多种文本特征提取方法:
- 词袋模型(CountVectorizer):统计每个词在文档中出现的次数
- TF-IDF转换(TfidfTransformer/TfidfVectorizer):考虑词频和逆文档频率
- 哈希向量化(HashingVectorizer):类似特征哈希,适用于文本
基本词频统计
from sklearn.feature_extraction.text import CountVectorizer
data = [
'Test sentence one of three.',
'Second test sentence of three.',
'Last sentence of three.'
]
vec = CountVectorizer()
vec.fit_transform(data).toarray()
输出结果:
array([[0, 1, 1, 0, 1, 1, 1],
[0, 1, 0, 1, 1, 1, 1],
[1, 1, 0, 0, 1, 0, 1]], dtype=int64)
TF-IDF加权
TF-IDF(词频-逆文档频率)是一种常用的文本特征加权方法,它降低常见词的权重,提高有区分度词的权重。
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vec = TfidfVectorizer()
tfidf_vec.fit_transform(data).toarray()
输出示例:
array([[0. , 0.3645444 , 0.61722732, 0. , 0.3645444 ,
0.46941728, 0.3645444 ],
[0. , 0.3645444 , 0. , 0.61722732, 0.3645444 ,
0.46941728, 0.3645444 ],
[0.69903033, 0.41285857, 0. , 0. , 0.41285857,
0. , 0.41285857]])
特征提取的最佳实践
- 理解数据特性:根据数据类型(文本、分类、数值)选择合适的特征提取方法
- 处理缺失值:在特征提取前处理好缺失数据
- 特征缩放:对数值特征进行标准化或归一化
- 维度控制:使用特征选择或降维技术处理高维数据
- 管道化处理:使用Scikit-Learn的Pipeline整合特征提取和模型训练
总结
特征提取是机器学习流程中的关键步骤,Scikit-Learn提供了丰富而强大的工具来简化这一过程。通过本教程,我们学习了如何处理字典数据、实现特征哈希以及提取文本特征。掌握这些技术将帮助你更好地准备数据,构建更高效的机器学习模型。
记住,没有放之四海而皆准的特征提取方法,最佳方法取决于你的具体数据和问题场景。实践和实验是找到最优解决方案的关键。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
249
2.48 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
90
119
暂无简介
Dart
548
119
React Native鸿蒙化仓库
JavaScript
217
298
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
126
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
356
1.75 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
153
204