Statsmodels 项目技术文档
2024-12-25 19:10:21作者:郁楠烈Hubert
1. 安装指南
1.1 通过 PyPI 安装
你可以通过 pip 安装最新版本的 statsmodels:
pip install statsmodels
1.2 通过 Conda 安装
如果你使用 Anaconda 或 Miniconda,可以通过以下命令安装:
conda install statsmodels
1.3 安装最新开发版本
如果你想安装最新的开发版本,可以使用以下命令:
pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver
1.4 从源码安装
如果你需要从源码安装,可以参考 INSTALL.txt 文件中的要求,或者访问文档中的安装指南。
2. 项目的使用说明
statsmodels 是一个 Python 包,提供了与 scipy 互补的统计计算功能,包括描述性统计、统计模型的估计和推断。它支持多种统计模型,如线性回归、广义线性模型、时间序列分析、生存分析等。
2.1 主要功能
- 线性回归模型:包括普通最小二乘法、广义最小二乘法、加权最小二乘法等。
- 混合线性模型:支持混合效应和方差分量。
- 广义线性模型 (GLM):支持所有单参数指数族分布。
- 离散模型:包括 Logit、Probit、多项 Logit 等。
- 时间序列分析:支持 ARIMA、VARMA、动态因子模型等。
- 生存分析:支持比例风险回归(Cox 模型)和生存函数估计。
- 多元分析:包括主成分分析、因子分析等。
2.2 示例代码
以下是一个简单的线性回归示例:
import statsmodels.api as sm
import numpy as np
# 生成数据
X = np.random.rand(100, 1)
y = 2 * X + np.random.randn(100, 1)
# 添加常数项
X = sm.add_constant(X)
# 拟合模型
model = sm.OLS(y, X)
results = model.fit()
# 输出结果
print(results.summary())
3. 项目 API 使用文档
3.1 线性回归模型
statsmodels 提供了多种线性回归模型,包括:
OLS:普通最小二乘法GLS:广义最小二乘法WLS:加权最小二乘法
3.1.1 普通最小二乘法 (OLS)
import statsmodels.api as sm
# 数据准备
X = sm.add_constant(X)
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
3.2 广义线性模型 (GLM)
statsmodels 支持多种广义线性模型,包括:
GLM:广义线性模型Binomial:二项分布Poisson:泊松分布
3.2.1 广义线性模型 (GLM)
import statsmodels.api as sm
# 数据准备
X = sm.add_constant(X)
model = sm.GLM(y, X, family=sm.families.Binomial())
results = model.fit()
print(results.summary())
3.3 时间序列分析
statsmodels 提供了多种时间序列分析模型,包括:
ARIMA:自回归积分滑动平均模型VARMA:向量自回归滑动平均模型DynamicFactor:动态因子模型
3.3.1 ARIMA 模型
import statsmodels.api as sm
# 数据准备
model = sm.tsa.ARIMA(y, order=(1, 1, 1))
results = model.fit()
print(results.summary())
4. 项目安装方式
4.1 通过 PyPI 安装
pip install statsmodels
4.2 通过 Conda 安装
conda install statsmodels
4.3 安装最新开发版本
pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver
4.4 从源码安装
git clone https://github.com/statsmodels/statsmodels.git
cd statsmodels
python setup.py install
通过以上步骤,你可以成功安装并使用 statsmodels 进行统计分析。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1