Statsmodels 项目技术文档
2024-12-25 21:51:50作者:郁楠烈Hubert
1. 安装指南
1.1 通过 PyPI 安装
你可以通过 pip 安装最新版本的 statsmodels:
pip install statsmodels
1.2 通过 Conda 安装
如果你使用 Anaconda 或 Miniconda,可以通过以下命令安装:
conda install statsmodels
1.3 安装最新开发版本
如果你想安装最新的开发版本,可以使用以下命令:
pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver
1.4 从源码安装
如果你需要从源码安装,可以参考 INSTALL.txt 文件中的要求,或者访问文档中的安装指南。
2. 项目的使用说明
statsmodels 是一个 Python 包,提供了与 scipy 互补的统计计算功能,包括描述性统计、统计模型的估计和推断。它支持多种统计模型,如线性回归、广义线性模型、时间序列分析、生存分析等。
2.1 主要功能
- 线性回归模型:包括普通最小二乘法、广义最小二乘法、加权最小二乘法等。
- 混合线性模型:支持混合效应和方差分量。
- 广义线性模型 (GLM):支持所有单参数指数族分布。
- 离散模型:包括 Logit、Probit、多项 Logit 等。
- 时间序列分析:支持 ARIMA、VARMA、动态因子模型等。
- 生存分析:支持比例风险回归(Cox 模型)和生存函数估计。
- 多元分析:包括主成分分析、因子分析等。
2.2 示例代码
以下是一个简单的线性回归示例:
import statsmodels.api as sm
import numpy as np
# 生成数据
X = np.random.rand(100, 1)
y = 2 * X + np.random.randn(100, 1)
# 添加常数项
X = sm.add_constant(X)
# 拟合模型
model = sm.OLS(y, X)
results = model.fit()
# 输出结果
print(results.summary())
3. 项目 API 使用文档
3.1 线性回归模型
statsmodels 提供了多种线性回归模型,包括:
OLS:普通最小二乘法GLS:广义最小二乘法WLS:加权最小二乘法
3.1.1 普通最小二乘法 (OLS)
import statsmodels.api as sm
# 数据准备
X = sm.add_constant(X)
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
3.2 广义线性模型 (GLM)
statsmodels 支持多种广义线性模型,包括:
GLM:广义线性模型Binomial:二项分布Poisson:泊松分布
3.2.1 广义线性模型 (GLM)
import statsmodels.api as sm
# 数据准备
X = sm.add_constant(X)
model = sm.GLM(y, X, family=sm.families.Binomial())
results = model.fit()
print(results.summary())
3.3 时间序列分析
statsmodels 提供了多种时间序列分析模型,包括:
ARIMA:自回归积分滑动平均模型VARMA:向量自回归滑动平均模型DynamicFactor:动态因子模型
3.3.1 ARIMA 模型
import statsmodels.api as sm
# 数据准备
model = sm.tsa.ARIMA(y, order=(1, 1, 1))
results = model.fit()
print(results.summary())
4. 项目安装方式
4.1 通过 PyPI 安装
pip install statsmodels
4.2 通过 Conda 安装
conda install statsmodels
4.3 安装最新开发版本
pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver
4.4 从源码安装
git clone https://github.com/statsmodels/statsmodels.git
cd statsmodels
python setup.py install
通过以上步骤,你可以成功安装并使用 statsmodels 进行统计分析。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881