探索未来计算的边界:Flash Cosine Similarity Attention
2024-05-31 02:37:45作者:蔡怀权
来源:Dive into Deep Learning,Quanta Magazine重制
一、项目简介
Flash Cosine Similarity Attention 是一款受启发于Flash Attention的开源库,它简化了注意力机制的实现,专注于速度、稳定性和内存效率的提升。通过采用L2正则化的查询和键,无需再追踪行最大值以确保数值稳定性。这意味着,您可以得到一个简化的注意力算法,且不会牺牲泛化性能。
最新更新:虽然在某些实验中表现不如预期,但研究表明,一种类似于余弦相似度注意力的方法已被证明适用于大规模视觉模型。这表明该方法在特定场景下依然有其价值。
二、技术分析
Flash Cosine Similarity Attention 实现了一种融合的余弦相似度计算方式,消除了对传统注意力机制中数值稳定性的复杂处理。它的核心是一个经过优化的CUDA内核,旨在提供更快的前向和后向传播速度,特别是在处理长序列时能更有效地利用内存。同时,项目还支持自注意力和交叉注意力,并可以应对掩码和自回归任务。
三、应用场景
本项目的应用广泛,适合各种深度学习场景:
- 自然语言处理中的Transformer模型,用于机器翻译、文本生成等任务。
- 计算机视觉领域,如图像生成模型(如扩散模型)和图像到文本的转换任务。
- 音频处理和语音识别,需要用到长序列分析的场景。
- 推荐系统,处理大量的用户和物品表示。
四、项目特点
- 高效稳定:通过L2规范化消除数值不稳定的需要,保证运算的稳定性。
- 快速内存友好:对于超过2048长度的序列,可以在保持性能的同时降低内存需求。
- 灵活可扩展:支持多种头部维度,包括16、32、64、96和128,便于适应不同的模型结构。
- 兼容性好:简单易用的API,与PyTorch无缝集成,支持直接导入并使用。
安装
使用以下命令轻松安装:
pip install flash-cosine-sim-attention
示例代码
以下是如何使用Flash Cosine Similarity Attention 的例子:
import torch
from flash_cosine_sim_attention import flash_cosine_sim_attention
q = torch.randn(1, 8, 1024, 64).cuda()
k = torch.randn(1, 8, 1024, 64).cuda()
v = torch.randn(1, 8, 1024, 64).cuda()
out = flash_cosine_sim_attention(q, k, v) # (1, 8, 1024, 64)
对于更复杂的场景,如自回归任务或掩码操作,只需添加额外参数即可。
总体而言,Flash Cosine Similarity Attention 提供了一个高效的解决方案,为研究人员和开发者提供了探索长序列任务的新工具。尽管目前还在持续改进中,但这个项目已经展示出在计算效率上的巨大潜力,值得尝试并在实践中挖掘更多的可能性。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp课程页面空白问题的技术分析与解决方案9 freeCodeCamp课程视频测验中的Tab键导航问题解析10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
118
Ascend Extension for PyTorch
Python
79
112
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56