探索未来计算的边界:Flash Cosine Similarity Attention
2024-05-31 02:37:45作者:蔡怀权
来源:Dive into Deep Learning,Quanta Magazine重制
一、项目简介
Flash Cosine Similarity Attention 是一款受启发于Flash Attention的开源库,它简化了注意力机制的实现,专注于速度、稳定性和内存效率的提升。通过采用L2正则化的查询和键,无需再追踪行最大值以确保数值稳定性。这意味着,您可以得到一个简化的注意力算法,且不会牺牲泛化性能。
最新更新:虽然在某些实验中表现不如预期,但研究表明,一种类似于余弦相似度注意力的方法已被证明适用于大规模视觉模型。这表明该方法在特定场景下依然有其价值。
二、技术分析
Flash Cosine Similarity Attention 实现了一种融合的余弦相似度计算方式,消除了对传统注意力机制中数值稳定性的复杂处理。它的核心是一个经过优化的CUDA内核,旨在提供更快的前向和后向传播速度,特别是在处理长序列时能更有效地利用内存。同时,项目还支持自注意力和交叉注意力,并可以应对掩码和自回归任务。
三、应用场景
本项目的应用广泛,适合各种深度学习场景:
- 自然语言处理中的Transformer模型,用于机器翻译、文本生成等任务。
- 计算机视觉领域,如图像生成模型(如扩散模型)和图像到文本的转换任务。
- 音频处理和语音识别,需要用到长序列分析的场景。
- 推荐系统,处理大量的用户和物品表示。
四、项目特点
- 高效稳定:通过L2规范化消除数值不稳定的需要,保证运算的稳定性。
- 快速内存友好:对于超过2048长度的序列,可以在保持性能的同时降低内存需求。
- 灵活可扩展:支持多种头部维度,包括16、32、64、96和128,便于适应不同的模型结构。
- 兼容性好:简单易用的API,与PyTorch无缝集成,支持直接导入并使用。
安装
使用以下命令轻松安装:
pip install flash-cosine-sim-attention
示例代码
以下是如何使用Flash Cosine Similarity Attention 的例子:
import torch
from flash_cosine_sim_attention import flash_cosine_sim_attention
q = torch.randn(1, 8, 1024, 64).cuda()
k = torch.randn(1, 8, 1024, 64).cuda()
v = torch.randn(1, 8, 1024, 64).cuda()
out = flash_cosine_sim_attention(q, k, v) # (1, 8, 1024, 64)
对于更复杂的场景,如自回归任务或掩码操作,只需添加额外参数即可。
总体而言,Flash Cosine Similarity Attention 提供了一个高效的解决方案,为研究人员和开发者提供了探索长序列任务的新工具。尽管目前还在持续改进中,但这个项目已经展示出在计算效率上的巨大潜力,值得尝试并在实践中挖掘更多的可能性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19