Ring Attention PyTorch 项目教程
2024-09-12 06:59:06作者:秋泉律Samson
1. 项目介绍
ring-attention-pytorch 是一个在 PyTorch 中实现 Ring Attention 的项目。Ring Attention 是由 Liu 等人在 Berkeley AI 提出的一种注意力机制,主要用于处理超长序列数据。该项目通过将数据在序列维度上进行分割(而不是在批次维度上),并应用环形减少(ring reduce)来处理注意力矩阵的块,类似于 Flash Attention 的方式。
该项目不仅实现了 Ring Attention,还包含了 Striped Attention 的逻辑,这是一种后续的论文,通过置换序列以更好地平衡自回归变换器的工作负载。此外,项目还支持分组查询注意力(Grouped Query Attention),这是由 Llama 系列注意力模型推广的一种技术,进一步节省了环形减少过程中的通信成本。
2. 项目快速启动
安装
首先,确保你已经安装了 PyTorch。然后,通过 pip 安装 ring-attention-pytorch:
pip install ring-attention-pytorch
使用示例
以下是一个简单的使用示例,展示了如何使用 Ring Attention:
import torch
from ring_attention_pytorch import RingAttention
# 初始化 RingAttention
attn = RingAttention(
dim=512, # 输入维度
dim_head=64, # 每个头的维度
heads=8, # 注意力头的数量
causal=True, # 是否使用因果掩码
auto_shard_seq=True, # 是否自动分片序列
ring_attn=True, # 是否使用环形注意力
ring_seq_size=512 # 环形序列大小
)
# 生成随机输入
tokens = torch.randn(1, 1024, 512)
# 应用注意力机制
attended = attn(tokens)
# 检查输出形状
assert attended.shape == tokens.shape
3. 应用案例和最佳实践
应用案例
Ring Attention 特别适用于需要处理超长序列的场景,例如:
- 自然语言处理:处理包含数百万个标记的文档。
- 时间序列分析:处理长时间跨度的时间序列数据。
- 生物信息学:处理长序列的 DNA 或蛋白质数据。
最佳实践
- 调整环形序列大小:根据你的硬件资源和数据特性,调整
ring_seq_size参数以优化性能。 - 使用因果掩码:在自回归任务中,确保设置
causal=True以避免未来信息泄露。 - 分片序列:启用
auto_shard_seq以自动分片序列,减少内存占用。
4. 典型生态项目
相关项目
- Flash Attention:由 Tri Dao 等人开发的快速且内存高效的注意力机制,
ring-attention-pytorch中的 CUDA 版本依赖于此。 - Triton:由 Phil Tillet 开发的中间语言和编译器,用于分块神经网络计算,
ring-attention-pytorch中的前向环形 Flash Attention CUDA 内核依赖于此。 - Llama:由 Facebook 开发的系列注意力模型,推广了分组查询注意力(Grouped Query Attention)。
通过这些项目的结合使用,可以进一步提升 Ring Attention 的性能和应用范围。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
201
暂无简介
Dart
625
141
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
315
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
381
3.52 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.11 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
127
857