Ring Attention PyTorch 项目教程
2024-09-12 21:00:46作者:秋泉律Samson
ring-attention-pytorch
Implementation of 💍 Ring Attention, from Liu et al. at Berkeley AI, in Pytorch
1. 项目介绍
ring-attention-pytorch 是一个在 PyTorch 中实现 Ring Attention 的项目。Ring Attention 是由 Liu 等人在 Berkeley AI 提出的一种注意力机制,主要用于处理超长序列数据。该项目通过将数据在序列维度上进行分割(而不是在批次维度上),并应用环形减少(ring reduce)来处理注意力矩阵的块,类似于 Flash Attention 的方式。
该项目不仅实现了 Ring Attention,还包含了 Striped Attention 的逻辑,这是一种后续的论文,通过置换序列以更好地平衡自回归变换器的工作负载。此外,项目还支持分组查询注意力(Grouped Query Attention),这是由 Llama 系列注意力模型推广的一种技术,进一步节省了环形减少过程中的通信成本。
2. 项目快速启动
安装
首先,确保你已经安装了 PyTorch。然后,通过 pip 安装 ring-attention-pytorch:
pip install ring-attention-pytorch
使用示例
以下是一个简单的使用示例,展示了如何使用 Ring Attention:
import torch
from ring_attention_pytorch import RingAttention
# 初始化 RingAttention
attn = RingAttention(
dim=512, # 输入维度
dim_head=64, # 每个头的维度
heads=8, # 注意力头的数量
causal=True, # 是否使用因果掩码
auto_shard_seq=True, # 是否自动分片序列
ring_attn=True, # 是否使用环形注意力
ring_seq_size=512 # 环形序列大小
)
# 生成随机输入
tokens = torch.randn(1, 1024, 512)
# 应用注意力机制
attended = attn(tokens)
# 检查输出形状
assert attended.shape == tokens.shape
3. 应用案例和最佳实践
应用案例
Ring Attention 特别适用于需要处理超长序列的场景,例如:
- 自然语言处理:处理包含数百万个标记的文档。
- 时间序列分析:处理长时间跨度的时间序列数据。
- 生物信息学:处理长序列的 DNA 或蛋白质数据。
最佳实践
- 调整环形序列大小:根据你的硬件资源和数据特性,调整
ring_seq_size参数以优化性能。 - 使用因果掩码:在自回归任务中,确保设置
causal=True以避免未来信息泄露。 - 分片序列:启用
auto_shard_seq以自动分片序列,减少内存占用。
4. 典型生态项目
相关项目
- Flash Attention:由 Tri Dao 等人开发的快速且内存高效的注意力机制,
ring-attention-pytorch中的 CUDA 版本依赖于此。 - Triton:由 Phil Tillet 开发的中间语言和编译器,用于分块神经网络计算,
ring-attention-pytorch中的前向环形 Flash Attention CUDA 内核依赖于此。 - Llama:由 Facebook 开发的系列注意力模型,推广了分组查询注意力(Grouped Query Attention)。
通过这些项目的结合使用,可以进一步提升 Ring Attention 的性能和应用范围。
ring-attention-pytorch
Implementation of 💍 Ring Attention, from Liu et al. at Berkeley AI, in Pytorch
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895