Ring Attention PyTorch 项目教程
2024-09-12 17:41:58作者:秋泉律Samson
1. 项目介绍
ring-attention-pytorch
是一个在 PyTorch 中实现 Ring Attention 的项目。Ring Attention 是由 Liu 等人在 Berkeley AI 提出的一种注意力机制,主要用于处理超长序列数据。该项目通过将数据在序列维度上进行分割(而不是在批次维度上),并应用环形减少(ring reduce)来处理注意力矩阵的块,类似于 Flash Attention 的方式。
该项目不仅实现了 Ring Attention,还包含了 Striped Attention 的逻辑,这是一种后续的论文,通过置换序列以更好地平衡自回归变换器的工作负载。此外,项目还支持分组查询注意力(Grouped Query Attention),这是由 Llama 系列注意力模型推广的一种技术,进一步节省了环形减少过程中的通信成本。
2. 项目快速启动
安装
首先,确保你已经安装了 PyTorch。然后,通过 pip 安装 ring-attention-pytorch
:
pip install ring-attention-pytorch
使用示例
以下是一个简单的使用示例,展示了如何使用 Ring Attention:
import torch
from ring_attention_pytorch import RingAttention
# 初始化 RingAttention
attn = RingAttention(
dim=512, # 输入维度
dim_head=64, # 每个头的维度
heads=8, # 注意力头的数量
causal=True, # 是否使用因果掩码
auto_shard_seq=True, # 是否自动分片序列
ring_attn=True, # 是否使用环形注意力
ring_seq_size=512 # 环形序列大小
)
# 生成随机输入
tokens = torch.randn(1, 1024, 512)
# 应用注意力机制
attended = attn(tokens)
# 检查输出形状
assert attended.shape == tokens.shape
3. 应用案例和最佳实践
应用案例
Ring Attention 特别适用于需要处理超长序列的场景,例如:
- 自然语言处理:处理包含数百万个标记的文档。
- 时间序列分析:处理长时间跨度的时间序列数据。
- 生物信息学:处理长序列的 DNA 或蛋白质数据。
最佳实践
- 调整环形序列大小:根据你的硬件资源和数据特性,调整
ring_seq_size
参数以优化性能。 - 使用因果掩码:在自回归任务中,确保设置
causal=True
以避免未来信息泄露。 - 分片序列:启用
auto_shard_seq
以自动分片序列,减少内存占用。
4. 典型生态项目
相关项目
- Flash Attention:由 Tri Dao 等人开发的快速且内存高效的注意力机制,
ring-attention-pytorch
中的 CUDA 版本依赖于此。 - Triton:由 Phil Tillet 开发的中间语言和编译器,用于分块神经网络计算,
ring-attention-pytorch
中的前向环形 Flash Attention CUDA 内核依赖于此。 - Llama:由 Facebook 开发的系列注意力模型,推广了分组查询注意力(Grouped Query Attention)。
通过这些项目的结合使用,可以进一步提升 Ring Attention 的性能和应用范围。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193