Whitebox SDK 使用教程:从安装到模型管理的完整指南
2025-07-04 14:30:28作者:郁楠烈Hubert
前言
Whitebox 是一个强大的机器学习模型监控和管理平台,其 SDK 提供了便捷的 Python 接口,帮助开发者轻松集成模型监控功能到现有工作流中。本文将详细介绍如何使用 Whitebox SDK 完成从安装到模型管理的全流程操作。
环境准备与安装
安装 Whitebox SDK
Whitebox SDK 可以通过 pip 包管理器轻松安装,安装过程会自动处理所有依赖项:
pip install whitebox-sdk
安装完成后,您可以通过 Python 导入来验证是否安装成功:
import whitebox
print(whitebox.__version__)
初始化配置
获取 API 密钥
在使用 SDK 前,您需要获取 Whitebox 服务的 API 密钥。这个密钥通常在首次启动 Whitebox 服务时自动生成。启动服务后,您将在日志中看到类似以下输出:
Created username: admin, API key: some_api_key
重要提示:请妥善保管此 API 密钥,如果丢失,您需要重置管理员用户才能获取新密钥。
初始化 Whitebox 客户端
获取 API 密钥后,您可以这样初始化 Whitebox 客户端:
from whitebox import Whitebox
# 替换为您的实际主机地址和API密钥
wb = Whitebox(
    host="http://127.0.0.1:8000",  # Whitebox服务地址
    api_key="some_api_key"         # 您的API密钥
)
模型管理
创建模型
在 Whitebox 中,模型是监控的基本单位。创建模型时需要指定多个关键参数:
model_response = wb.create_model(
    name="信用卡欺诈检测模型",      # 模型名称
    type="binary",                # 模型类型:binary(二分类)/regression(回归)/multi(多分类)
    labels={                      # 标签映射
        '正常交易': 0,
        '欺诈交易': 1
    },
    target_column="is_fraud",     # 目标列名
    granularity="1D"              # 监控粒度:1D(每天)/1H(每小时)等
)
参数说明:
type:指定模型类型,影响后续的监控指标计算labels:将可读标签映射到模型输出的数值granularity:决定监控数据的聚合频率
获取模型信息
创建模型后,您可以通过模型ID获取详细信息:
model_info = wb.get_model("your_model_id_here")
print(model_info)
删除模型
删除模型会级联删除所有相关数据(包括数据集、推理记录和监控器):
wb.delete_model("your_model_id_here")
警告:此操作不可逆,请谨慎执行!
数据管理
加载训练数据集
训练数据集是模型性能基准的基础,Whitebox 需要原始数据和预处理后的数据进行比较:
import pandas as pd
# 加载数据
raw_train = pd.read_csv("raw_train_data.csv")
processed_train = pd.read_csv("processed_train_data.csv")
# 记录训练数据
wb.log_training_dataset(
    model_id="your_model_id_here",
    non_processed=raw_train,  # 原始数据
    processed=processed_train  # 预处理后数据
)
关键要求:
- 原始数据和预处理数据必须行数相同
 - 数据必须包含多行(不能是单行)
 - 训练数据应一次性完整提交
 
记录推理数据
记录推理数据时,除了原始和处理后的数据,还需要提供时间戳和实际值(可选):
# 加载推理数据
raw_infer = pd.read_csv("raw_inference_data.csv")
processed_infer = pd.read_csv("processed_inference_data.csv")
# 准备时间戳和实际值
timestamps = pd.Series(["2023-01-01T12:00:00"] * len(raw_infer))
actuals = pd.Series([0, 1, 0, 0, 1])  # 实际标签
# 记录推理
wb.log_inferences(
    model_id="your_model_id_here",
    non_processed=raw_infer,
    processed=processed_infer,
    timestamps=timestamps,
    actuals=actuals  # 如果已知实际值,强烈建议提供
)
注意事项:
- 时间戳数量必须与数据行数匹配
 - 实际值一旦提交无法更新,请确保准确性
 - 推理数据可以分批提交
 
最佳实践建议
- 密钥管理:将 API 密钥存储在环境变量中而非代码中
 - 错误处理:对 SDK 调用添加 try-except 块捕获异常
 - 数据验证:在提交前检查数据一致性(行数、列名等)
 - 监控策略:根据业务需求选择合适的监控粒度(granularity)
 
通过本教程,您应该已经掌握了 Whitebox SDK 的核心功能。实际应用中,您还可以结合 Whitebox 的监控功能,设置数据漂移、性能下降等告警,全面保障模型在生产环境中的稳定性。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443