Whitebox SDK 使用教程:从安装到模型管理的完整指南
2025-07-04 14:11:44作者:郁楠烈Hubert
前言
Whitebox 是一个强大的机器学习模型监控和管理平台,其 SDK 提供了便捷的 Python 接口,帮助开发者轻松集成模型监控功能到现有工作流中。本文将详细介绍如何使用 Whitebox SDK 完成从安装到模型管理的全流程操作。
环境准备与安装
安装 Whitebox SDK
Whitebox SDK 可以通过 pip 包管理器轻松安装,安装过程会自动处理所有依赖项:
pip install whitebox-sdk
安装完成后,您可以通过 Python 导入来验证是否安装成功:
import whitebox
print(whitebox.__version__)
初始化配置
获取 API 密钥
在使用 SDK 前,您需要获取 Whitebox 服务的 API 密钥。这个密钥通常在首次启动 Whitebox 服务时自动生成。启动服务后,您将在日志中看到类似以下输出:
Created username: admin, API key: some_api_key
重要提示:请妥善保管此 API 密钥,如果丢失,您需要重置管理员用户才能获取新密钥。
初始化 Whitebox 客户端
获取 API 密钥后,您可以这样初始化 Whitebox 客户端:
from whitebox import Whitebox
# 替换为您的实际主机地址和API密钥
wb = Whitebox(
host="http://127.0.0.1:8000", # Whitebox服务地址
api_key="some_api_key" # 您的API密钥
)
模型管理
创建模型
在 Whitebox 中,模型是监控的基本单位。创建模型时需要指定多个关键参数:
model_response = wb.create_model(
name="信用卡欺诈检测模型", # 模型名称
type="binary", # 模型类型:binary(二分类)/regression(回归)/multi(多分类)
labels={ # 标签映射
'正常交易': 0,
'欺诈交易': 1
},
target_column="is_fraud", # 目标列名
granularity="1D" # 监控粒度:1D(每天)/1H(每小时)等
)
参数说明:
type:指定模型类型,影响后续的监控指标计算labels:将可读标签映射到模型输出的数值granularity:决定监控数据的聚合频率
获取模型信息
创建模型后,您可以通过模型ID获取详细信息:
model_info = wb.get_model("your_model_id_here")
print(model_info)
删除模型
删除模型会级联删除所有相关数据(包括数据集、推理记录和监控器):
wb.delete_model("your_model_id_here")
警告:此操作不可逆,请谨慎执行!
数据管理
加载训练数据集
训练数据集是模型性能基准的基础,Whitebox 需要原始数据和预处理后的数据进行比较:
import pandas as pd
# 加载数据
raw_train = pd.read_csv("raw_train_data.csv")
processed_train = pd.read_csv("processed_train_data.csv")
# 记录训练数据
wb.log_training_dataset(
model_id="your_model_id_here",
non_processed=raw_train, # 原始数据
processed=processed_train # 预处理后数据
)
关键要求:
- 原始数据和预处理数据必须行数相同
- 数据必须包含多行(不能是单行)
- 训练数据应一次性完整提交
记录推理数据
记录推理数据时,除了原始和处理后的数据,还需要提供时间戳和实际值(可选):
# 加载推理数据
raw_infer = pd.read_csv("raw_inference_data.csv")
processed_infer = pd.read_csv("processed_inference_data.csv")
# 准备时间戳和实际值
timestamps = pd.Series(["2023-01-01T12:00:00"] * len(raw_infer))
actuals = pd.Series([0, 1, 0, 0, 1]) # 实际标签
# 记录推理
wb.log_inferences(
model_id="your_model_id_here",
non_processed=raw_infer,
processed=processed_infer,
timestamps=timestamps,
actuals=actuals # 如果已知实际值,强烈建议提供
)
注意事项:
- 时间戳数量必须与数据行数匹配
- 实际值一旦提交无法更新,请确保准确性
- 推理数据可以分批提交
最佳实践建议
- 密钥管理:将 API 密钥存储在环境变量中而非代码中
- 错误处理:对 SDK 调用添加 try-except 块捕获异常
- 数据验证:在提交前检查数据一致性(行数、列名等)
- 监控策略:根据业务需求选择合适的监控粒度(granularity)
通过本教程,您应该已经掌握了 Whitebox SDK 的核心功能。实际应用中,您还可以结合 Whitebox 的监控功能,设置数据漂移、性能下降等告警,全面保障模型在生产环境中的稳定性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355