Whitebox项目SDK开发指南:从模型管理到监控告警全解析
2025-07-04 21:12:58作者:殷蕙予
前言
Whitebox作为一个专业的机器学习模型管理平台,其SDK提供了完整的模型生命周期管理能力。本文将深入解析Whitebox SDK的核心功能,帮助开发者快速掌握模型创建、训练数据记录、推理日志、监控告警等关键操作。
模型管理
创建模型
create_model方法是模型生命周期的起点,它会在数据库中创建模型元数据记录。该方法支持三种类型的模型:
- 二分类模型(
binary) - 多分类模型(
multi_class) - 回归模型(
regression) 
关键参数说明:
granularity定义了报告生成的时间粒度,支持分钟(T)、小时(H)、天(D)、周(W)等单位labels参数用于分类模型,定义标签名称与编码的映射关系- 回归模型不需要指定labels参数
 
# 创建二分类模型示例
labels = {"正常":0, "异常":1}
model = create_model(
    name="欺诈检测模型",
    type="binary",
    target_column="is_fraud",
    granularity="1D",
    labels=labels,
    description="用于检测信用卡欺诈交易的模型"
)
模型查询与删除
通过get_model和delete_model可以方便地查询和删除模型:
# 查询模型
model_details = get_model(model_id="your_model_id")
# 删除模型
delete_model(model_id="your_model_id")
训练数据管理
log_training_dataset方法用于记录模型的训练数据,特点包括:
- 同时记录原始数据和预处理后的数据
 - 数据保存后会触发训练流水线
 - 训练完成的模型会自动保存在指定目录
 
log_training_dataset(
    model_id="your_model_id",
    non_processed=raw_df,  # 原始数据DataFrame
    processed=processed_df  # 处理后的DataFrame
)
注意:两个DataFrame的行数必须严格一致,否则会抛出异常。
推理记录
log_inferences方法用于记录模型的推理结果,支持以下特性:
- 同时记录原始输入和预处理后的输入
 - 可选记录实际值(actuals),用于后续模型评估
 - 必须提供每个推理记录的时间戳
 
log_inferences(
    model_id="your_model_id",
    non_processed=inference_raw_df,
    processed=inference_processed_df,
    timestamps=pd.Series([...]),  # 每个推理记录的时间戳
    actuals=pd.Series([...])     # 可选的实际值
)
可解释性分析
通过get_xai_row可以获取单个推理记录的可解释性报告:
xai_report = get_xai_row(inference_row_id="row_id_123")
模型监控
Whitebox提供了强大的模型监控能力,可以监控多种指标:
监控指标类型
- 
性能指标:
- 准确率(accuracy)
 - 精确率(precision)
 - 召回率(recall)
 - F1分数(f1)
 - R平方(r_square)
 - 均方误差(mean_squared_error)
 - 平均绝对误差(mean_absolute_error)
 
 - 
数据指标:
- 数据漂移(data_drift)
 - 概念漂移(concept_drift)
 
 
创建监控器
create_model_monitor(
    model_id="your_model_id",
    name="准确率监控",
    status="active",
    metric="accuracy",
    severity="high",
    email="alert@yourcompany.com",
    lower_threshold=0.85  # 当准确率低于0.85时触发告警
)
对于数据漂移类监控,需要指定
feature参数而不是阈值
监控器管理
# 更新监控器
update_model_monitor(
    model_monitor_id="monitor_123",
    severity="mid",  # 降低告警级别
    lower_threshold=0.80  # 调整阈值
)
# 删除监控器
delete_model_monitor(model_monitor_id="monitor_123")
指标报告
Whitebox SDK提供了多种报告获取方法:
# 获取漂移指标报告
drift_report = get_drifting_metrics(model_id="your_model_id")
# 获取描述性统计报告
stats_report = get_descriptive_statistics(model_id="your_model_id")
# 获取性能指标报告
performance_report = get_performance_metrics(model_id="your_model_id")
最佳实践
- 
模型命名规范:建议使用"业务领域_模型类型_版本"的命名方式,如"fraud_detection_binary_v1"
 - 
监控设置建议:
- 关键业务模型设置高严重级别告警
 - 对于数据漂移,建议监控模型的关键特征
 - 设置合理的阈值,避免告警风暴
 
 - 
推理记录优化:
- 批量记录推理结果,减少API调用次数
 - 确保时间戳的准确性,这对后续分析至关重要
 
 
总结
Whitebox SDK提供了一套完整的模型管理工具链,从模型创建、训练数据记录、推理日志到监控告警,覆盖了模型生命周期的各个阶段。通过合理使用这些功能,团队可以更好地管理和维护生产环境中的机器学习模型,及时发现并解决问题,确保模型的稳定性和可靠性。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446