Whitebox项目SDK开发指南:从模型管理到监控告警全解析
2025-07-04 06:07:43作者:殷蕙予
前言
Whitebox作为一个专业的机器学习模型管理平台,其SDK提供了完整的模型生命周期管理能力。本文将深入解析Whitebox SDK的核心功能,帮助开发者快速掌握模型创建、训练数据记录、推理日志、监控告警等关键操作。
模型管理
创建模型
create_model方法是模型生命周期的起点,它会在数据库中创建模型元数据记录。该方法支持三种类型的模型:
- 二分类模型(
binary) - 多分类模型(
multi_class) - 回归模型(
regression)
关键参数说明:
granularity定义了报告生成的时间粒度,支持分钟(T)、小时(H)、天(D)、周(W)等单位labels参数用于分类模型,定义标签名称与编码的映射关系- 回归模型不需要指定labels参数
# 创建二分类模型示例
labels = {"正常":0, "异常":1}
model = create_model(
name="欺诈检测模型",
type="binary",
target_column="is_fraud",
granularity="1D",
labels=labels,
description="用于检测信用卡欺诈交易的模型"
)
模型查询与删除
通过get_model和delete_model可以方便地查询和删除模型:
# 查询模型
model_details = get_model(model_id="your_model_id")
# 删除模型
delete_model(model_id="your_model_id")
训练数据管理
log_training_dataset方法用于记录模型的训练数据,特点包括:
- 同时记录原始数据和预处理后的数据
- 数据保存后会触发训练流水线
- 训练完成的模型会自动保存在指定目录
log_training_dataset(
model_id="your_model_id",
non_processed=raw_df, # 原始数据DataFrame
processed=processed_df # 处理后的DataFrame
)
注意:两个DataFrame的行数必须严格一致,否则会抛出异常。
推理记录
log_inferences方法用于记录模型的推理结果,支持以下特性:
- 同时记录原始输入和预处理后的输入
- 可选记录实际值(actuals),用于后续模型评估
- 必须提供每个推理记录的时间戳
log_inferences(
model_id="your_model_id",
non_processed=inference_raw_df,
processed=inference_processed_df,
timestamps=pd.Series([...]), # 每个推理记录的时间戳
actuals=pd.Series([...]) # 可选的实际值
)
可解释性分析
通过get_xai_row可以获取单个推理记录的可解释性报告:
xai_report = get_xai_row(inference_row_id="row_id_123")
模型监控
Whitebox提供了强大的模型监控能力,可以监控多种指标:
监控指标类型
-
性能指标:
- 准确率(accuracy)
- 精确率(precision)
- 召回率(recall)
- F1分数(f1)
- R平方(r_square)
- 均方误差(mean_squared_error)
- 平均绝对误差(mean_absolute_error)
-
数据指标:
- 数据漂移(data_drift)
- 概念漂移(concept_drift)
创建监控器
create_model_monitor(
model_id="your_model_id",
name="准确率监控",
status="active",
metric="accuracy",
severity="high",
email="alert@yourcompany.com",
lower_threshold=0.85 # 当准确率低于0.85时触发告警
)
对于数据漂移类监控,需要指定
feature参数而不是阈值
监控器管理
# 更新监控器
update_model_monitor(
model_monitor_id="monitor_123",
severity="mid", # 降低告警级别
lower_threshold=0.80 # 调整阈值
)
# 删除监控器
delete_model_monitor(model_monitor_id="monitor_123")
指标报告
Whitebox SDK提供了多种报告获取方法:
# 获取漂移指标报告
drift_report = get_drifting_metrics(model_id="your_model_id")
# 获取描述性统计报告
stats_report = get_descriptive_statistics(model_id="your_model_id")
# 获取性能指标报告
performance_report = get_performance_metrics(model_id="your_model_id")
最佳实践
-
模型命名规范:建议使用"业务领域_模型类型_版本"的命名方式,如"fraud_detection_binary_v1"
-
监控设置建议:
- 关键业务模型设置高严重级别告警
- 对于数据漂移,建议监控模型的关键特征
- 设置合理的阈值,避免告警风暴
-
推理记录优化:
- 批量记录推理结果,减少API调用次数
- 确保时间戳的准确性,这对后续分析至关重要
总结
Whitebox SDK提供了一套完整的模型管理工具链,从模型创建、训练数据记录、推理日志到监控告警,覆盖了模型生命周期的各个阶段。通过合理使用这些功能,团队可以更好地管理和维护生产环境中的机器学习模型,及时发现并解决问题,确保模型的稳定性和可靠性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1