Whitebox项目SDK开发指南:从模型管理到监控告警全解析
2025-07-04 22:58:16作者:殷蕙予
前言
Whitebox作为一个专业的机器学习模型管理平台,其SDK提供了完整的模型生命周期管理能力。本文将深入解析Whitebox SDK的核心功能,帮助开发者快速掌握模型创建、训练数据记录、推理日志、监控告警等关键操作。
模型管理
创建模型
create_model方法是模型生命周期的起点,它会在数据库中创建模型元数据记录。该方法支持三种类型的模型:
- 二分类模型(
binary) - 多分类模型(
multi_class) - 回归模型(
regression)
关键参数说明:
granularity定义了报告生成的时间粒度,支持分钟(T)、小时(H)、天(D)、周(W)等单位labels参数用于分类模型,定义标签名称与编码的映射关系- 回归模型不需要指定labels参数
# 创建二分类模型示例
labels = {"正常":0, "异常":1}
model = create_model(
name="欺诈检测模型",
type="binary",
target_column="is_fraud",
granularity="1D",
labels=labels,
description="用于检测信用卡欺诈交易的模型"
)
模型查询与删除
通过get_model和delete_model可以方便地查询和删除模型:
# 查询模型
model_details = get_model(model_id="your_model_id")
# 删除模型
delete_model(model_id="your_model_id")
训练数据管理
log_training_dataset方法用于记录模型的训练数据,特点包括:
- 同时记录原始数据和预处理后的数据
- 数据保存后会触发训练流水线
- 训练完成的模型会自动保存在指定目录
log_training_dataset(
model_id="your_model_id",
non_processed=raw_df, # 原始数据DataFrame
processed=processed_df # 处理后的DataFrame
)
注意:两个DataFrame的行数必须严格一致,否则会抛出异常。
推理记录
log_inferences方法用于记录模型的推理结果,支持以下特性:
- 同时记录原始输入和预处理后的输入
- 可选记录实际值(actuals),用于后续模型评估
- 必须提供每个推理记录的时间戳
log_inferences(
model_id="your_model_id",
non_processed=inference_raw_df,
processed=inference_processed_df,
timestamps=pd.Series([...]), # 每个推理记录的时间戳
actuals=pd.Series([...]) # 可选的实际值
)
可解释性分析
通过get_xai_row可以获取单个推理记录的可解释性报告:
xai_report = get_xai_row(inference_row_id="row_id_123")
模型监控
Whitebox提供了强大的模型监控能力,可以监控多种指标:
监控指标类型
-
性能指标:
- 准确率(accuracy)
- 精确率(precision)
- 召回率(recall)
- F1分数(f1)
- R平方(r_square)
- 均方误差(mean_squared_error)
- 平均绝对误差(mean_absolute_error)
-
数据指标:
- 数据漂移(data_drift)
- 概念漂移(concept_drift)
创建监控器
create_model_monitor(
model_id="your_model_id",
name="准确率监控",
status="active",
metric="accuracy",
severity="high",
email="alert@yourcompany.com",
lower_threshold=0.85 # 当准确率低于0.85时触发告警
)
对于数据漂移类监控,需要指定
feature参数而不是阈值
监控器管理
# 更新监控器
update_model_monitor(
model_monitor_id="monitor_123",
severity="mid", # 降低告警级别
lower_threshold=0.80 # 调整阈值
)
# 删除监控器
delete_model_monitor(model_monitor_id="monitor_123")
指标报告
Whitebox SDK提供了多种报告获取方法:
# 获取漂移指标报告
drift_report = get_drifting_metrics(model_id="your_model_id")
# 获取描述性统计报告
stats_report = get_descriptive_statistics(model_id="your_model_id")
# 获取性能指标报告
performance_report = get_performance_metrics(model_id="your_model_id")
最佳实践
-
模型命名规范:建议使用"业务领域_模型类型_版本"的命名方式,如"fraud_detection_binary_v1"
-
监控设置建议:
- 关键业务模型设置高严重级别告警
- 对于数据漂移,建议监控模型的关键特征
- 设置合理的阈值,避免告警风暴
-
推理记录优化:
- 批量记录推理结果,减少API调用次数
- 确保时间戳的准确性,这对后续分析至关重要
总结
Whitebox SDK提供了一套完整的模型管理工具链,从模型创建、训练数据记录、推理日志到监控告警,覆盖了模型生命周期的各个阶段。通过合理使用这些功能,团队可以更好地管理和维护生产环境中的机器学习模型,及时发现并解决问题,确保模型的稳定性和可靠性。
登录后查看全文
热门项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
415
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
612
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141