AndroidStudioBenchmark 的项目扩展与二次开发
项目的基础介绍
AndroidStudioBenchmark 是一个开源项目,旨在通过一个大型的代码库来测量 Android Studio 的编译时间。该项目由开发者 Serhiy Radkivskyi 创建,并用于其个人 YouTube 频道,通过比较顶级笔记本电脑的性能,以选择最适合 Android 开发的系统。项目的目标是为开发者提供一个实用的工具,以帮助他们作出性价比最高的硬件选择。
项目的核心功能
项目的核心功能是测试和比较不同硬件配置下 Android Studio 的编译性能。它通过构建一个基于 Firefox Focus for Android 的代码库来实现这一目标,开发者可以在这个基础上进行性能测试,并分享测试结果。
项目使用了哪些框架或库?
AndroidStudioBenchmark 项目使用了以下框架和库:
- Android Studio:作为主要的开发环境。
- Gradle:作为自动化构建工具。
- Java Development Kit (JDK):用于编译 Java 代码。
项目的代码目录及介绍
项目的代码目录结构如下:
AndroidStudioBenchmark/
├── .github/
│ ├── ISSUE_TEMPLATE
├── app/
│ ├── src/
│ ├── build.gradle
├── docs/
├── gradle/
│ ├── wrapper/
├── quality/
├── shavar-prod-lists/
├── tools/
├── .android2po
├── .cron.yml
├── .gitignore
├── .gitmodules
├── .taskcluster.yml
├── CODEOWNERS
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── Screengrabfile
├── Screengrabfile.template
├── build.gradle
├── codecov.yml
├── gradle.properties
├── gradlew
├── gradlew.bat
├── l10n.toml
├── settings.gradle
其中,app/ 目录包含了主要的 Android 应用代码,gradle/ 目录包含了构建脚本,docs/ 目录可能包含项目文档,而 .github/ 目录包含了 GitHub 的模板文件。
对项目进行扩展或者二次开发的方向
-
性能测试自动化:可以开发一个自动化脚本来定期运行性能测试,并将结果自动记录和比较。
-
多平台支持:目前该项目主要针对 Windows 和 macOS,可以扩展到 Linux 平台。
-
集成更多测试指标:除了编译时间,还可以添加内存使用、CPU 温度等更多测试指标。
-
用户界面:开发一个图形用户界面(GUI),让用户更方便地进行测试和查看结果。
-
云端服务:将性能测试服务部署到云端,让用户无需本地环境即可在线进行性能测试。
-
社区驱动:建立一个社区,让用户可以分享他们的测试结果,形成一个数据库,帮助开发者选择硬件。
通过这些扩展和二次开发,AndroidStudioBenchmark 项目将能够更好地服务于 Android 开发者社区,帮助他们提升开发效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00