liburing项目中io_uring轮询模式在高队列深度下的性能问题分析
2025-06-26 07:30:31作者:蔡怀权
背景介绍
在Linux高性能I/O领域,io_uring作为新一代异步I/O框架,其轮询模式(polled mode)因其低延迟特性备受关注。本文基于liburing项目中的一个典型性能问题案例,深入分析当使用io_uring轮询模式配合NVMe-oF RDMA时,在高队列深度(QD)条件下出现的性能陡降现象。
问题现象
在100Gbps RDMA网络环境下,通过NVMe-oF访问远程SSD时发现:
- 当队列深度从128提升到256时,带宽从8.4GB/s骤降至2.15GB/s
- 伴随出现上下文切换次数激增和异常的pgpgin带宽读数
- 该现象仅出现在io_uring轮询模式,传统libaio和中断驱动的io_uring模式表现正常
技术分析
核心问题定位
通过perf性能分析工具,发现性能瓶颈主要来自:
- 内存控制组压力:psi_group_charge调用显著增加,表明内存cgroup管理开销成为瓶颈
- io-wq工作队列活动:当队列深度超过设备处理能力时,请求被转移到io-wq工作线程处理
根本原因
深入分析后发现这是由多层因素共同导致的:
-
NVMe-oF队列深度限制:
- 目标端SSD的SQ队列深度为1023
- 主机端NVMe-oF驱动默认限制为127(受NVME_RDMA_MAX_QUEUE_SIZE常量限制)
- 当fio设置QD=256时,实际已超过硬件队列深度
-
io_uring内存管理机制:
- io_uring默认缓存128个请求(IO_ALLOC_CACHE_MAX)
- 超过此数值会导致频繁的内存控制组记账操作
- 在轮询模式下,这种记账开销被进一步放大
-
工作模式差异:
- libaio在队列满时会直接阻塞
- io_uring则通过io-wq工作线程重试提交
- 轮询模式下的io-wq会持续消耗CPU资源
解决方案建议
-
内核参数调整:
- 考虑提高IO_ALLOC_CACHE_MAX默认值(需重新编译内核)
- 调整iodepth_batch相关参数优化批量提交
-
NVMe-oF配置优化:
- 确保使用支持更大队列深度的内核版本(含NVME_RDMA_MAX_QUEUE_SIZE补丁)
- 合理设置nr-poll-queues参数
-
应用层优化:
- 避免设置超过实际硬件能力的队列深度
- 监控psi和memcg指标,及时发现资源竞争
经验总结
此案例揭示了在高性能存储场景中,软件栈各层次配置协调的重要性。特别是:
- 硬件队列深度与软件配置的匹配
- 内存管理开销在极端条件下的放大效应
- 不同I/O引擎在资源竞争时的行为差异
对于追求极致性能的用户,建议建立从应用到硬件的全栈性能分析能力,才能准确识别和解决此类复杂问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218