LMMs-Eval项目中POPE评测指标的实现与使用
2025-07-01 18:00:33作者:韦蓉瑛
背景介绍
在大型多模态模型(LMM)的评估中,POPE(Pointing Out Prominent Entities)是一个重要的评测指标,用于评估模型在视觉问答任务中识别和定位显著实体的能力。LMMs-Eval作为专门用于评估多模态模型的工具库,近期对其POPE评测功能进行了重要更新。
POPE评测的三个维度
原始的POPE评测主要关注模型对图像中显著实体的识别能力。经过LMMs-Eval项目的更新,现在可以分别输出三个维度的评测结果:
- 随机采样评测(Random):从候选答案中随机选择实体进行评测
- 流行度采样评测(Popular):基于实体在数据集中出现的频率进行采样评测
- 挑战性采样评测(Challenging):使用更具挑战性的实体组合进行评测
这种多维度的评测方式能够更全面地评估模型在不同场景下的表现,特别是识别模型在具有挑战性样本上的鲁棒性。
使用方法更新
最新版本的LMMs-Eval已经实现了这一功能。用户只需在运行评测时指定--tasks pope_full参数,即可获得包含三个维度的完整POPE评测结果。例如,使用llava-1.5-7b模型进行评测时,可以得到类似如下的输出:
| pope_full | pope_chal | pope_pop | pope_rad |
|----------|---------|---------|---------|
| 85.5 | 80.2 | 87.3 | 89.0 |
技术实现分析
这一更新在技术实现上主要涉及:
- 数据集划分:将原始POPE数据集按照三种采样策略进行重组
- 评测逻辑:保持核心评测指标一致,但分别计算三种采样策略下的结果
- 结果汇总:将三个维度的结果统一呈现,便于比较分析
这种实现方式既保持了与原有评测的兼容性,又增加了评测的维度和深度。
实际应用建议
对于研究人员和开发者,建议:
- 关注模型在不同采样策略下的表现差异,这可以反映模型的鲁棒性
- 当模型在挑战性评测中表现明显下降时,可能需要增强模型处理挑战性样本的能力
- 比较不同模型时,应综合考虑三个维度的结果,而不仅仅看总体分数
总结
LMMs-Eval对POPE评测指标的更新使得多模态模型的评估更加全面和深入。通过区分随机、流行度和挑战性三种采样策略,研究人员可以更准确地了解模型在不同场景下的表现特点,为模型优化提供更有针对性的指导。这一改进体现了多模态模型评估向更精细化、多维度化发展的趋势。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
681
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1