LMMs-Eval项目中POPE评测指标的实现与使用
2025-07-01 15:08:39作者:韦蓉瑛
背景介绍
在大型多模态模型(LMM)的评估中,POPE(Pointing Out Prominent Entities)是一个重要的评测指标,用于评估模型在视觉问答任务中识别和定位显著实体的能力。LMMs-Eval作为专门用于评估多模态模型的工具库,近期对其POPE评测功能进行了重要更新。
POPE评测的三个维度
原始的POPE评测主要关注模型对图像中显著实体的识别能力。经过LMMs-Eval项目的更新,现在可以分别输出三个维度的评测结果:
- 随机采样评测(Random):从候选答案中随机选择实体进行评测
- 流行度采样评测(Popular):基于实体在数据集中出现的频率进行采样评测
- 挑战性采样评测(Challenging):使用更具挑战性的实体组合进行评测
这种多维度的评测方式能够更全面地评估模型在不同场景下的表现,特别是识别模型在具有挑战性样本上的鲁棒性。
使用方法更新
最新版本的LMMs-Eval已经实现了这一功能。用户只需在运行评测时指定--tasks pope_full参数,即可获得包含三个维度的完整POPE评测结果。例如,使用llava-1.5-7b模型进行评测时,可以得到类似如下的输出:
| pope_full | pope_chal | pope_pop | pope_rad |
|----------|---------|---------|---------|
| 85.5 | 80.2 | 87.3 | 89.0 |
技术实现分析
这一更新在技术实现上主要涉及:
- 数据集划分:将原始POPE数据集按照三种采样策略进行重组
- 评测逻辑:保持核心评测指标一致,但分别计算三种采样策略下的结果
- 结果汇总:将三个维度的结果统一呈现,便于比较分析
这种实现方式既保持了与原有评测的兼容性,又增加了评测的维度和深度。
实际应用建议
对于研究人员和开发者,建议:
- 关注模型在不同采样策略下的表现差异,这可以反映模型的鲁棒性
- 当模型在挑战性评测中表现明显下降时,可能需要增强模型处理挑战性样本的能力
- 比较不同模型时,应综合考虑三个维度的结果,而不仅仅看总体分数
总结
LMMs-Eval对POPE评测指标的更新使得多模态模型的评估更加全面和深入。通过区分随机、流行度和挑战性三种采样策略,研究人员可以更准确地了解模型在不同场景下的表现特点,为模型优化提供更有针对性的指导。这一改进体现了多模态模型评估向更精细化、多维度化发展的趋势。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218