Kubernetes中NVIDIA设备插件部署问题排查与解决方案
2025-06-25 01:19:33作者:龚格成
在Kubernetes集群中部署NVIDIA GPU设备时,经常会遇到设备插件无法正常识别GPU的问题。本文将以一个典型故障案例为基础,深入分析问题原因并提供完整的解决方案。
问题现象
当在Kubernetes 1.26集群中使用NVIDIA k8s-device-plugin时,设备插件日志显示无法加载NVML库的错误:
Detected non-NVML platform: could not load NVML library: libnvidia-ml.so.1
同时,运行GPU测试容器时会出现CUDA驱动版本不兼容的错误提示。
根本原因分析
经过排查,发现该问题主要由以下两个因素导致:
-
容器运行时配置不完整:虽然已经通过nvidia-ctk工具配置了containerd运行时,但未将nvidia运行时设置为默认运行时。
-
运行时类缺失:Kubernetes集群中缺少对应的RuntimeClass定义,导致Pod无法正确使用NVIDIA容器运行时。
详细解决方案
1. 正确配置容器运行时
对于使用containerd作为容器运行时的环境,需要执行以下配置命令:
sudo nvidia-ctk runtime configure --runtime=containerd --set-as-default
sudo systemctl restart containerd
这个操作会确保:
- 在containerd配置中添加nvidia运行时
- 将其设置为默认运行时
- 配置正确的二进制路径指向nvidia-container-runtime
2. 创建Kubernetes RuntimeClass
在Kubernetes中创建RuntimeClass资源:
apiVersion: node.k8s.io/v1
handler: nvidia
kind: RuntimeClass
metadata:
name: nvidia
3. 部署设备插件时指定运行时类
在部署NVIDIA设备插件DaemonSet时,需要在PodSpec中明确指定运行时类:
spec:
runtimeClassName: nvidia
如果使用Helm部署,可以通过参数指定:
helm install --set runtimeClassName=nvidia ...
验证步骤
完成上述配置后,可以通过以下方式验证:
- 检查设备插件日志,确认不再出现NVML库加载错误
- 运行测试Pod验证GPU是否可用
- 通过nvidia-smi命令确认容器内GPU信息可见
最佳实践建议
- 版本兼容性检查:确保NVIDIA驱动版本、容器工具包版本和设备插件版本相互兼容
- 节点标签管理:为GPU节点添加特定标签,便于通过nodeSelector定向部署工作负载
- 资源监控:部署GPU监控组件,实时掌握GPU资源使用情况
- 定期更新:保持NVIDIA相关组件的定期更新,获取最新功能和安全修复
通过以上系统化的配置和验证流程,可以确保Kubernetes集群中的NVIDIA GPU资源被正确识别和调度,为AI/ML等GPU密集型工作负载提供可靠的基础设施支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134