非局部空间传播网络:深度补全的革命性突破
2024-09-23 16:36:10作者:鲍丁臣Ursa
项目介绍
在计算机视觉领域,深度补全一直是一个具有挑战性的问题。传统的算法通常依赖于固定的局部邻居进行深度预测,这往往导致在深度边界处出现混合深度的问题。为了解决这一难题,Jinsun Park 等研究者在2020年欧洲计算机视觉会议(ECCV)上提出了一个创新的解决方案——非局部空间传播网络(Non-Local Spatial Propagation Network, NLSPN)。该网络通过引入非局部邻居和可学习的亲和力归一化,显著提高了深度补全的准确性和鲁棒性。
NLSPN 网络的核心思想是利用 RGB 图像和稀疏深度图像作为输入,预测每个像素的非局部邻居及其亲和力,并生成初始深度图和像素级置信度。随后,通过迭代的方式,利用置信度和非局部空间传播过程对初始深度预测进行精细化处理。这种方法不仅避免了无关的局部邻居,还专注于相关的非局部邻居,从而有效解决了深度边界处的混合深度问题。
项目技术分析
NLSPN 网络的技术架构主要包括以下几个关键组件:
- 非局部邻居预测:网络通过学习每个像素的非局部邻居,避免了传统方法中固定局部邻居的局限性。
- 亲和力归一化:引入可学习的亲和力归一化机制,更好地组合不同邻居的贡献,提高了深度预测的准确性。
- 迭代精细化:通过多次迭代,利用置信度和非局部空间传播过程,逐步优化深度图的质量。
NLSPN 网络的实现基于 PyTorch,并使用了 NVIDIA Apex 和 Deformable Convolution V2 等先进技术,确保了高效的训练和推理性能。
项目及技术应用场景
NLSPN 网络在多个领域具有广泛的应用前景:
- 自动驾驶:在自动驾驶系统中,准确的深度信息对于障碍物检测和路径规划至关重要。NLSPN 能够提供高质量的深度图,显著提升自动驾驶系统的安全性。
- 增强现实(AR):在 AR 应用中,深度信息是实现真实感渲染的关键。NLSPN 的高精度深度补全能力可以大幅提升 AR 体验的真实感。
- 机器人导航:机器人导航系统需要精确的环境深度信息来进行路径规划和避障。NLSPN 的高鲁棒性使其成为机器人导航系统的理想选择。
项目特点
NLSPN 网络具有以下显著特点:
- 高精度:通过非局部邻居和可学习的亲和力归一化,NLSPN 在多个数据集上的深度补全精度显著优于传统方法。
- 高鲁棒性:NLSPN 有效解决了深度边界处的混合深度问题,表现出更高的鲁棒性。
- 高效性:基于 PyTorch 和 NVIDIA Apex 的实现,NLSPN 在多 GPU 环境下具有高效的训练和推理性能。
- 开源:NLSPN 的代码和预训练模型已公开发布,方便研究人员和开发者进行进一步的研究和应用。
NLSPN 网络的提出,为深度补全领域带来了革命性的突破。无论是在学术研究还是实际应用中,NLSPN 都展现出了巨大的潜力。如果你正在寻找一个高效、高精度的深度补全解决方案,NLSPN 绝对值得一试。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355