非局部空间传播网络用于深度补全:NLSPN_ECCV20 教程
2024-09-22 01:21:51作者:郦嵘贵Just
项目介绍
非局部空间传播网络(NLSPN)是Jinsun Park、Kyungdon Joo、Zhe Hu、Chi-Kuei Liu与In So Kweon在2020年的欧洲计算机视觉会议(ECCV)上提出的一种深度学习模型,专门设计用于解决深度图像的补全问题。该模型通过摄取RGB图像与稀疏深度图,利用非局部邻域信息及像素级置信度进行初始深度预测,并通过迭代过程结合自信度与非局部空间传播来细化深度估计。不同于依赖固定局部邻接的传统方法,NLSPN能够有效识别并集中于相关非局部邻域,提高了对混合深度边界的鲁棒性。
项目快速启动
环境搭建
确保你的开发环境满足以下要求:
- 操作系统:Ubuntu 16.04 或 18.04
- Python 3.8 (推荐使用Anaconda 4.8.4)
- PyTorch 1.6 和 torchvision 0.7
- NVIDIA 相关技术(CUDA 10.2, NVIDIA Apex, Deformable Convolution V2)
- GPU设备(推荐至少NVIDIA GTX 1080 TI 或 Titan RTX)
安装必要的库,包括NVIDIA Apex和Deformable Convolution V2:
# 安装NVIDIA Apex
git clone https://github.com/NVIDIA/apex
cd apex
git reset --hard 4ef930c1c884fdca5f472ab2ce7cb9b505d26c1a
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .
# 安装Deformable Convolution V2
cd NLSPN_ROOT/src/model/deformconv
sh make.sh
获取项目代码和数据集
克隆项目仓库,并准备数据集(如NYU Depth V2和KITTI Depth Completion):
git clone https://github.com/zzangjinsun/NLSPN_ECCV20.git
数据集预处理遵循项目提供的说明。
运行示例
以NYU Depth V2为例,开始训练流程:
cd NLSPN_ROOT/src
python main.py \
--dir_data PATH_TO_NYUv2 \
--data_name NYU \
--split_json /data_json/nyu.json \
--patch_height 228 --patch_width 304 \
--gpus 0 1 2 3 --loss 1.0*L1+1.0*L2 \
--epochs 20 --batch_size 12 \
--max_depth 1000 --num_sample 500 \
--save YOUR_EXPERIMENT_NAME
应用案例和最佳实践
NLSPN特别适用于室内与室外场景中的深度图像补全。最佳实践中,开发者应关注其特有的非局部邻接关系预测以及置信度引导的深度图迭代优化策略。通过调整网络参数和损失函数权重,可以在特定应用场景中达到最优性能。
典型生态项目
尽管本项目主要聚焦于NLSPN框架本身,它的应用可以扩展到任何需要深度信息补全或增强的领域,比如自动驾驶车辆、机器人导航、增强现实等。社区贡献者可能会围绕此基础开发适应新场景的变体,或是集成至其他计算机视觉框架中,促进深度估计技术的整体发展。
以上就是NLSPN_ECCV20项目的简要教程,提供了一个快速入门的指南,并概述了如何应用和拓展这一强大的深度学习模型。深入研究源码和论文,将帮助您更好地理解和应用这一先进技术。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328