非局部空间传播网络用于深度补全:NLSPN_ECCV20 教程
2024-09-22 05:39:20作者:郦嵘贵Just
项目介绍
非局部空间传播网络(NLSPN)是Jinsun Park、Kyungdon Joo、Zhe Hu、Chi-Kuei Liu与In So Kweon在2020年的欧洲计算机视觉会议(ECCV)上提出的一种深度学习模型,专门设计用于解决深度图像的补全问题。该模型通过摄取RGB图像与稀疏深度图,利用非局部邻域信息及像素级置信度进行初始深度预测,并通过迭代过程结合自信度与非局部空间传播来细化深度估计。不同于依赖固定局部邻接的传统方法,NLSPN能够有效识别并集中于相关非局部邻域,提高了对混合深度边界的鲁棒性。
项目快速启动
环境搭建
确保你的开发环境满足以下要求:
- 操作系统:Ubuntu 16.04 或 18.04
- Python 3.8 (推荐使用Anaconda 4.8.4)
- PyTorch 1.6 和 torchvision 0.7
- NVIDIA 相关技术(CUDA 10.2, NVIDIA Apex, Deformable Convolution V2)
- GPU设备(推荐至少NVIDIA GTX 1080 TI 或 Titan RTX)
安装必要的库,包括NVIDIA Apex和Deformable Convolution V2:
# 安装NVIDIA Apex
git clone https://github.com/NVIDIA/apex
cd apex
git reset --hard 4ef930c1c884fdca5f472ab2ce7cb9b505d26c1a
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .
# 安装Deformable Convolution V2
cd NLSPN_ROOT/src/model/deformconv
sh make.sh
获取项目代码和数据集
克隆项目仓库,并准备数据集(如NYU Depth V2和KITTI Depth Completion):
git clone https://github.com/zzangjinsun/NLSPN_ECCV20.git
数据集预处理遵循项目提供的说明。
运行示例
以NYU Depth V2为例,开始训练流程:
cd NLSPN_ROOT/src
python main.py \
--dir_data PATH_TO_NYUv2 \
--data_name NYU \
--split_json /data_json/nyu.json \
--patch_height 228 --patch_width 304 \
--gpus 0 1 2 3 --loss 1.0*L1+1.0*L2 \
--epochs 20 --batch_size 12 \
--max_depth 1000 --num_sample 500 \
--save YOUR_EXPERIMENT_NAME
应用案例和最佳实践
NLSPN特别适用于室内与室外场景中的深度图像补全。最佳实践中,开发者应关注其特有的非局部邻接关系预测以及置信度引导的深度图迭代优化策略。通过调整网络参数和损失函数权重,可以在特定应用场景中达到最优性能。
典型生态项目
尽管本项目主要聚焦于NLSPN框架本身,它的应用可以扩展到任何需要深度信息补全或增强的领域,比如自动驾驶车辆、机器人导航、增强现实等。社区贡献者可能会围绕此基础开发适应新场景的变体,或是集成至其他计算机视觉框架中,促进深度估计技术的整体发展。
以上就是NLSPN_ECCV20项目的简要教程,提供了一个快速入门的指南,并概述了如何应用和拓展这一强大的深度学习模型。深入研究源码和论文,将帮助您更好地理解和应用这一先进技术。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K