非局部空间传播网络用于深度补全:NLSPN_ECCV20 教程
2024-09-22 06:35:46作者:郦嵘贵Just
项目介绍
非局部空间传播网络(NLSPN)是Jinsun Park、Kyungdon Joo、Zhe Hu、Chi-Kuei Liu与In So Kweon在2020年的欧洲计算机视觉会议(ECCV)上提出的一种深度学习模型,专门设计用于解决深度图像的补全问题。该模型通过摄取RGB图像与稀疏深度图,利用非局部邻域信息及像素级置信度进行初始深度预测,并通过迭代过程结合自信度与非局部空间传播来细化深度估计。不同于依赖固定局部邻接的传统方法,NLSPN能够有效识别并集中于相关非局部邻域,提高了对混合深度边界的鲁棒性。
项目快速启动
环境搭建
确保你的开发环境满足以下要求:
- 操作系统:Ubuntu 16.04 或 18.04
- Python 3.8 (推荐使用Anaconda 4.8.4)
- PyTorch 1.6 和 torchvision 0.7
- NVIDIA 相关技术(CUDA 10.2, NVIDIA Apex, Deformable Convolution V2)
- GPU设备(推荐至少NVIDIA GTX 1080 TI 或 Titan RTX)
安装必要的库,包括NVIDIA Apex和Deformable Convolution V2:
# 安装NVIDIA Apex
git clone https://github.com/NVIDIA/apex
cd apex
git reset --hard 4ef930c1c884fdca5f472ab2ce7cb9b505d26c1a
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .
# 安装Deformable Convolution V2
cd NLSPN_ROOT/src/model/deformconv
sh make.sh
获取项目代码和数据集
克隆项目仓库,并准备数据集(如NYU Depth V2和KITTI Depth Completion):
git clone https://github.com/zzangjinsun/NLSPN_ECCV20.git
数据集预处理遵循项目提供的说明。
运行示例
以NYU Depth V2为例,开始训练流程:
cd NLSPN_ROOT/src
python main.py \
--dir_data PATH_TO_NYUv2 \
--data_name NYU \
--split_json /data_json/nyu.json \
--patch_height 228 --patch_width 304 \
--gpus 0 1 2 3 --loss 1.0*L1+1.0*L2 \
--epochs 20 --batch_size 12 \
--max_depth 1000 --num_sample 500 \
--save YOUR_EXPERIMENT_NAME
应用案例和最佳实践
NLSPN特别适用于室内与室外场景中的深度图像补全。最佳实践中,开发者应关注其特有的非局部邻接关系预测以及置信度引导的深度图迭代优化策略。通过调整网络参数和损失函数权重,可以在特定应用场景中达到最优性能。
典型生态项目
尽管本项目主要聚焦于NLSPN框架本身,它的应用可以扩展到任何需要深度信息补全或增强的领域,比如自动驾驶车辆、机器人导航、增强现实等。社区贡献者可能会围绕此基础开发适应新场景的变体,或是集成至其他计算机视觉框架中,促进深度估计技术的整体发展。
以上就是NLSPN_ECCV20项目的简要教程,提供了一个快速入门的指南,并概述了如何应用和拓展这一强大的深度学习模型。深入研究源码和论文,将帮助您更好地理解和应用这一先进技术。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0124AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.28 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
72

暂无简介
Dart
527
116

仓颉编程语言运行时与标准库。
Cangjie
122
91

React Native鸿蒙化仓库
JavaScript
215
289

Ascend Extension for PyTorch
Python
70
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
567
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
400