非局部空间传播网络用于深度补全:NLSPN_ECCV20 教程
2024-09-22 01:28:45作者:郦嵘贵Just
项目介绍
非局部空间传播网络(NLSPN)是Jinsun Park、Kyungdon Joo、Zhe Hu、Chi-Kuei Liu与In So Kweon在2020年的欧洲计算机视觉会议(ECCV)上提出的一种深度学习模型,专门设计用于解决深度图像的补全问题。该模型通过摄取RGB图像与稀疏深度图,利用非局部邻域信息及像素级置信度进行初始深度预测,并通过迭代过程结合自信度与非局部空间传播来细化深度估计。不同于依赖固定局部邻接的传统方法,NLSPN能够有效识别并集中于相关非局部邻域,提高了对混合深度边界的鲁棒性。
项目快速启动
环境搭建
确保你的开发环境满足以下要求:
- 操作系统:Ubuntu 16.04 或 18.04
- Python 3.8 (推荐使用Anaconda 4.8.4)
- PyTorch 1.6 和 torchvision 0.7
- NVIDIA 相关技术(CUDA 10.2, NVIDIA Apex, Deformable Convolution V2)
- GPU设备(推荐至少NVIDIA GTX 1080 TI 或 Titan RTX)
安装必要的库,包括NVIDIA Apex和Deformable Convolution V2:
# 安装NVIDIA Apex
git clone https://github.com/NVIDIA/apex
cd apex
git reset --hard 4ef930c1c884fdca5f472ab2ce7cb9b505d26c1a
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .
# 安装Deformable Convolution V2
cd NLSPN_ROOT/src/model/deformconv
sh make.sh
获取项目代码和数据集
克隆项目仓库,并准备数据集(如NYU Depth V2和KITTI Depth Completion):
git clone https://github.com/zzangjinsun/NLSPN_ECCV20.git
数据集预处理遵循项目提供的说明。
运行示例
以NYU Depth V2为例,开始训练流程:
cd NLSPN_ROOT/src
python main.py \
--dir_data PATH_TO_NYUv2 \
--data_name NYU \
--split_json /data_json/nyu.json \
--patch_height 228 --patch_width 304 \
--gpus 0 1 2 3 --loss 1.0*L1+1.0*L2 \
--epochs 20 --batch_size 12 \
--max_depth 1000 --num_sample 500 \
--save YOUR_EXPERIMENT_NAME
应用案例和最佳实践
NLSPN特别适用于室内与室外场景中的深度图像补全。最佳实践中,开发者应关注其特有的非局部邻接关系预测以及置信度引导的深度图迭代优化策略。通过调整网络参数和损失函数权重,可以在特定应用场景中达到最优性能。
典型生态项目
尽管本项目主要聚焦于NLSPN框架本身,它的应用可以扩展到任何需要深度信息补全或增强的领域,比如自动驾驶车辆、机器人导航、增强现实等。社区贡献者可能会围绕此基础开发适应新场景的变体,或是集成至其他计算机视觉框架中,促进深度估计技术的整体发展。
以上就是NLSPN_ECCV20项目的简要教程,提供了一个快速入门的指南,并概述了如何应用和拓展这一强大的深度学习模型。深入研究源码和论文,将帮助您更好地理解和应用这一先进技术。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216