Stellar Core中BucketList写入性能优化分析
2025-06-25 01:39:32作者:瞿蔚英Wynne
背景与问题概述
在分布式账本系统Stellar Core中,BucketList是一种关键的数据结构,用于高效存储和管理账本状态。当前实现中存在一个显著的性能瓶颈:在写入新批次数据时,系统进行了大量不必要的文件I/O操作,严重影响了整体性能。
当前实现的问题细节
现有实现主要存在三个方面的性能问题:
-
重复的文件操作:每次写入新批次时,系统会执行以下冗余操作:
- 将内存中的条目向量转换为新bucket
- 立即将bucket写入磁盘
- 重新打开文件为bucket建立索引
-
低效的线程使用:系统启动一个低优先级的后台线程来执行合并操作,但这个线程却阻塞了主线程的执行。合并过程涉及:
- 通过文件I/O进行数据合并
- 再次为合并输出重建索引
-
内存资源浪费:由于所有条目数据已经存在于内存中,但系统仍然通过文件I/O进行level 0的合并操作,造成了不必要的性能开销。
优化方案设计
针对上述问题,我们提出以下优化措施:
-
主线程执行合并:
- 取消低优先级后台线程的设计
- 所有合并操作改由主线程直接执行
- 避免线程切换和同步带来的开销
-
单次索引构建:
- 确保每个bucket只构建一次索引
- 消除重复索引带来的计算开销
-
内存优化合并:
- 对于level 0的合并操作,完全在内存中完成
- 只有当数据需要持久化时才执行文件写入
- 充分利用已有的内存数据,减少磁盘I/O
技术实现考量
在实施这些优化时,需要考虑以下技术细节:
-
内存管理:
- 需要合理控制内存使用量,防止内存耗尽
- 对于大型合并操作,可能需要分批次处理
-
错误处理:
- 确保内存操作有适当的异常处理机制
- 维持数据的完整性和一致性
-
性能监控:
- 实现细粒度的性能指标收集
- 监控优化前后的I/O操作次数和延迟变化
预期收益
实施这些优化后,系统将获得以下改进:
-
显著减少磁盘I/O:
- 消除重复的文件写入和读取
- 降低磁盘带宽消耗
-
降低延迟:
- 主线程不再等待后台操作
- 整体处理时间缩短
-
提高吞吐量:
- 更高效的资源利用
- 系统能够处理更高的交易负载
总结
通过对Stellar Core中BucketList写入流程的优化,我们可以显著提升系统性能。这种优化不仅解决了当前的具体问题,也为未来处理更大规模的数据提供了良好的基础。关键在于平衡内存使用和磁盘I/O,同时简化操作流程,消除不必要的冗余工作。这种优化思路也可以应用于其他类似系统的性能调优中。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147