S2ORC Doc2Json 项目教程
项目介绍
S2ORC Doc2Json 是一个用于解析科学论文的项目,支持将 PDF 和 LaTeX 文件转换为 JSON 格式。该项目是由 Allen Institute for AI 开发的,作为 S2ORC(Semantic Scholar Open Research Corpus)的一部分。通过使用 Grobid 和自定义的 TEI XML 到 JSON 解析器,该项目能够高效地处理科学论文,提取关键信息并转换为结构化的 JSON 数据。
项目快速启动
环境设置
首先,确保你已经安装了 Miniconda 或其他 Python 环境管理工具。然后创建一个新的环境并激活它:
conda create -n doc2json python=3.8 pytest
conda activate doc2json
安装依赖
克隆项目仓库并安装所需的依赖:
git clone https://github.com/allenai/s2orc-doc2json.git
cd s2orc-doc2json
pip install -r requirements.txt
python setup.py develop
PDF 处理
使用 Grobid 处理 PDF 文件并转换为 JSON:
# 安装 Grobid
git clone https://github.com/kermitt2/grobid.git
cd grobid
./gradlew clean install
# 运行 Grobid 服务
./gradlew run
# 使用 grobid2json 工具处理 PDF
python scripts/grobid2json/process_pdf.py --input /path/to/your/pdf --output /path/to/output/json
应用案例和最佳实践
案例一:学术搜索引擎
S2ORC Doc2Json 可以用于构建学术搜索引擎,通过解析大量的科学论文并提取关键信息,如标题、作者、摘要和引用,从而提供高效的搜索和推荐功能。
案例二:文本挖掘
利用 S2ORC Doc2Json 解析的 JSON 数据,可以进行深入的文本挖掘,如关键词提取、主题建模和情感分析,从而揭示科学论文中的潜在模式和趋势。
最佳实践
- 数据质量检查:定期检查解析的 JSON 数据质量,确保信息的准确性和完整性。
- 性能优化:针对大规模数据处理,优化 Grobid 和自定义解析器的性能,提高处理速度。
典型生态项目
S2ORC
S2ORC(Semantic Scholar Open Research Corpus)是一个大规模的科学论文语料库,包含数百万篇论文。S2ORC Doc2Json 是 S2ORC 项目的关键组成部分,用于将原始的 PDF 和 LaTeX 文件转换为结构化的 JSON 数据。
Semantic Scholar
Semantic Scholar 是一个由 AI 驱动的学术搜索引擎,利用 S2ORC 和 S2ORC Doc2Json 提供的数据,为用户提供高质量的学术搜索和推荐服务。
通过以上模块的介绍,您可以快速了解并开始使用 S2ORC Doc2Json 项目,从而在科学论文处理和文本挖掘领域发挥其强大的功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00