Tenstorrent Metal v0.59.0-rc13版本技术解析与改进亮点
2025-07-10 16:36:33作者:盛欣凯Ernestine
项目简介
Tenstorrent Metal是一个专注于高性能计算和人工智能加速的开源项目,提供了强大的硬件抽象层和计算框架。该项目通过创新的架构设计,为深度学习和大规模并行计算任务提供了高效的解决方案。最新发布的v0.59.0-rc13版本带来了多项重要改进和功能增强。
核心架构优化
本次版本在系统架构层面进行了多项重要改进:
-
设备初始化流程重构:将固件构建和内存清除操作从设备初始化阶段移至MetalContext初始化阶段,优化了启动流程,提高了系统初始化效率。
-
分布式计算增强:
- 新增了对ND分片(多维分片)的支持,为张量在网格设备和缓冲区中的分布提供了更灵活的配置选项
- 改进了行主序分片嵌入的支持,优化了嵌入层的计算效率
-
路由算法优化:
- 针对West路由器边缘端口进行了特别优化,提升了网格间路由的性能
- 实现了到下一个网格的优化路由策略,减少了数据传输延迟
计算性能提升
在计算性能方面,本次更新包含多项重要改进:
-
TopK算子增强:
- 扩展支持子核网格(sub_core_grid)配置
- 在列方向上充分利用可用核心资源,提高了计算并行度
-
Argmax算子优化:
- 根据NOC(片上网络)宽度动态调整每核心处理单元数量
- 实现了更精细的负载均衡
-
矩阵乘法改进:
- 调整了批大小计算方法
- 优化了矩阵乘法测试用例,提高了数值稳定性
-
特殊函数支持:
- 为乘法操作增加了uint16数据类型支持
- 为按位或和异或操作增加了uint16支持
系统稳定性与可靠性
-
设备管理增强:
- 统一了CloseDevice和CloseDevices的实现步骤
- 移除了DevicePool::initialize的noexcept限定,改进了错误处理
-
内存管理优化:
- 消除了主机端缓冲区分配/释放的概念,简化了内存管理模型
- 隐藏了主机缓冲区操作细节,通过transform接口提供更安全的访问方式
-
调试与监控:
- 增加了跟踪缓冲区大小,支持更详细的运行时分析
- 收集了多项观察器(watcher)更新,增强了系统监控能力
新功能与模型支持
-
新增模型支持:
- 集成了VAE解码器到SDv1-4演示中
- 更新了SDXL演示,支持更复杂的生成任务
- 为Mobilenetv2和Yolov9c模型提供了官方支持
-
训练架构:
- 引入了3层训练架构演示
- 修复了自定义分词器启用时的兼容性问题
-
通信原语:
- 实现了一对多(one to all)和一对多组播(one to all multicast)通信模式
- 增加了"One from All"原语的测试支持
开发者体验改进
-
代码质量提升:
- 进行了全面的IWYU(Include What You Use)清理
- 移除了未使用的文件和函数,简化了代码库
- 修复了多处未初始化变量问题
-
构建系统优化:
- 将ttnn目标安装移入专用CMake文件
- 合并了链接器片段,简化了构建流程
-
文档与测试:
- 更新了多个演示的README文档
- 为NOC API添加了详细的测试文档
- 修正了FMOD操作的文档说明
总结
Tenstorrent Metal v0.59.0-rc13版本在计算性能、系统稳定性和开发者体验方面都做出了显著改进。特别是对分布式计算和路由算法的优化,为大规模AI模型部署提供了更好的支持。新增的模型演示和训练架构展示了框架在实际应用中的强大能力。这些改进共同推动了Tenstorrent Metal作为一个高性能计算平台的发展,为开发者在AI和HPC领域提供了更强大的工具。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
581
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
366
仓颉编程语言运行时与标准库。
Cangjie
130
379
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205