MANIQA 项目使用教程
2024-09-23 16:11:44作者:毕习沙Eudora
1. 项目目录结构及介绍
MANIQA 项目的目录结构如下:
MANIQA/
├── data/
│ ├── image/
│ ├── data.py
│ └── ...
├── models/
│ ├── model.py
│ └── ...
├── timm/
│ ├── utils.py
│ └── ...
├── utils/
│ ├── utils.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── config.py
├── inference.py
├── predict_one_image.py
├── requirements.txt
└── train_maniqa.py
目录结构介绍
- data/: 存放数据集相关文件,包括图像数据和数据处理脚本。
- models/: 存放模型的定义和实现代码。
- timm/: 存放与模型训练和推理相关的工具函数。
- utils/: 存放项目中使用的各种辅助函数和工具。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- config.py: 项目配置文件。
- inference.py: 推理脚本,用于对图像进行质量评估。
- predict_one_image.py: 用于预测单张图像质量的脚本。
- requirements.txt: 项目依赖库列表。
- train_maniqa.py: 训练模型的脚本。
2. 项目启动文件介绍
train_maniqa.py
该文件是 MANIQA 项目的主要启动文件,用于训练模型。通过运行该脚本,可以启动模型的训练过程。
python train_maniqa.py
inference.py
该文件用于对图像进行质量评估的推理过程。通过运行该脚本,可以对指定图像进行质量评分。
python inference.py
predict_one_image.py
该文件用于预测单张图像的质量评分。通过运行该脚本,可以对单张图像进行质量评估。
python predict_one_image.py
3. 项目的配置文件介绍
config.py
config.py
文件是 MANIQA 项目的配置文件,包含了训练和推理过程中所需的各项配置参数。以下是一些关键配置项的介绍:
# 数据集名称
dataset_name = "PIPAL2022"
# 训练数据路径
train_dis_path = "data/train_dis_images"
# 验证数据路径
val_dis_path = "data/val_dis_images"
# 模型保存路径
model_save_path = "checkpoints/maniqa_model.pth"
# 其他配置项...
通过修改 config.py
文件中的配置项,可以自定义训练和推理过程中的各项参数,如数据集路径、模型保存路径等。
以上是 MANIQA 项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这份文档能帮助你更好地理解和使用 MANIQA 项目。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
530
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401