首页
/ MANIQA:多维度注意力网络在无参考图像质量评估中的应用

MANIQA:多维度注意力网络在无参考图像质量评估中的应用

2024-09-21 20:09:12作者:滑思眉Philip

项目介绍

MANIQA(Multi-dimension Attention Network for No-Reference Image Quality Assessment)是由清华大学智能交互组开发的一款无参考图像质量评估工具。该项目在NTIRE2022 感知图像质量评估挑战赛 Track 2 无参考竞赛中荣获第一名,展示了其在图像质量评估领域的卓越性能。

MANIQA 的核心目标是评估图像的感知质量,尤其是在处理基于生成对抗网络(GAN)生成的失真图像时,能够提供准确的质量评分。通过多维度注意力机制,MANIQA 能够有效地捕捉图像的全局和局部特征,从而提升评估的准确性。

项目技术分析

MANIQA 的技术架构主要由以下几个部分组成:

  1. 特征提取:使用 Vision Transformer(ViT)提取图像特征。
  2. 注意力机制:引入转置注意力块(Transposed Attention Block, TAB)和尺度 Swin Transformer 块(Scale Swin Transformer Block, SSTB),分别在通道和空间维度上应用注意力机制,增强图像不同区域之间的交互。
  3. 双分支结构:采用双分支结构进行补丁加权质量预测,根据每个补丁的权重预测最终得分。

通过这些技术手段,MANIQA 能够在多个标准数据集(如 LIVE、TID2013、CSIQ 和 KADID-10K)上显著超越现有的最先进方法。

项目及技术应用场景

MANIQA 的应用场景非常广泛,尤其适用于以下领域:

  • 图像处理与增强:在图像处理过程中,评估图像质量以优化处理算法。
  • 图像生成与编辑:在生成对抗网络(GAN)生成的图像中,评估图像质量以改进生成模型。
  • 图像存储与传输:在图像存储和传输过程中,评估图像质量以确保传输后的图像质量。
  • 图像检索与分类:在图像检索和分类系统中,评估图像质量以提高检索和分类的准确性。

项目特点

MANIQA 具有以下显著特点:

  1. 多维度注意力机制:通过在通道和空间维度上应用注意力机制,MANIQA 能够更全面地捕捉图像的特征,提升评估的准确性。
  2. 双分支结构:采用双分支结构进行补丁加权质量预测,能够更精细地评估图像质量。
  3. 高性能:在多个标准数据集上,MANIQA 的表现显著优于现有的最先进方法,展示了其强大的性能。
  4. 易于使用:MANIQA 提供了详细的文档和预训练模型,用户可以轻松上手并应用于实际项目中。

结语

MANIQA 作为一款无参考图像质量评估工具,凭借其多维度注意力机制和双分支结构,在图像质量评估领域展现了卓越的性能。无论是在图像处理、生成、存储还是检索领域,MANIQA 都能为用户提供准确、高效的图像质量评估服务。如果你正在寻找一款强大的图像质量评估工具,MANIQA 绝对值得一试!

访问 MANIQA 项目仓库

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5