JupyterLab Tabular Data Editor 使用教程
1. 项目介绍
JupyterLab Tabular Data Editor 是一个用于在 JupyterLab 中高效操作表格数据的扩展。它允许用户在 JupyterLab 环境中对表格数据进行编辑、排序、插入和删除行/列等操作。该项目目前处于实验阶段,API 可能会频繁变化。
2. 项目快速启动
安装
使用 JupyterLab 3.x
pip install jupyterlab-tabular-data-editor
使用 JupyterLab 2.x
jupyter labextension install jupyterlab-tabular-data-editor
开发环境安装
-
克隆项目到本地环境:
git clone https://github.com/jupytercalpoly/jupyterlab-tabular-data-editor.git cd jupyterlab-tabular-data-editor -
安装依赖并链接开发版本:
pip install -e . jupyter labextension develop . --overwrite -
构建并运行 JupyterLab:
jlpm run build jupyter lab -
在开发模式下运行(可选):
jlpm run watch jupyter lab --watch
3. 应用案例和最佳实践
案例1:数据清洗
在数据分析过程中,数据清洗是一个常见的需求。使用 JupyterLab Tabular Data Editor,你可以直接在 JupyterLab 中对 CSV 文件进行编辑,例如删除无效行、修改错误数据等。
案例2:数据格式化
在数据可视化之前,通常需要对数据进行格式化。JupyterLab Tabular Data Editor 提供了便捷的工具,可以快速调整数据的格式,如日期格式、数字格式等。
最佳实践
- 使用开发模式:在开发模式下运行 JupyterLab,可以实时查看代码修改后的效果,提高开发效率。
- 定期更新:由于该项目处于实验阶段,API 可能会频繁变化,建议定期更新以获取最新功能和修复。
4. 典型生态项目
JupyterLab
JupyterLab 是一个基于 Web 的交互式开发环境,支持多种编程语言和数据科学工具。JupyterLab Tabular Data Editor 作为其扩展,进一步增强了 JupyterLab 在数据处理方面的能力。
Lumino Datagrid
Lumino Datagrid 是一个高性能的表格组件库,广泛应用于 JupyterLab 及其扩展中。JupyterLab Tabular Data Editor 使用了 Lumino Datagrid 来实现表格数据的展示和编辑。
Pandas
Pandas 是一个强大的数据处理库,广泛用于数据分析和数据科学。JupyterLab Tabular Data Editor 可以与 Pandas 无缝集成,提供更直观的数据操作界面。
通过以上模块的介绍,你可以快速上手并深入了解 JupyterLab Tabular Data Editor 的使用和开发。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00