Deeplearning4j 示例项目教程
1. 项目介绍
Deeplearning4j(DL4J)是一个基于JVM的深度学习框架,旨在为Java和Scala开发者提供强大的深度学习工具。DL4J生态系统包括多个项目,如DL4J本身、ND4J(线性代数库)、SameDiff(自动微分框架)和DataVec(数据ETL工具)。这些项目共同支持从数据加载、预处理到构建和训练深度学习模型的全过程。
DL4J示例项目(deeplearning4j-examples)是一个包含多个子项目的仓库,每个子项目都展示了DL4J生态系统中不同功能的使用方法。这些示例涵盖了从简单的神经网络构建到复杂的分布式训练和强化学习等多个方面。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Java 8 或更高版本
- Maven 3.x
- Git
2.2 克隆项目
首先,克隆deeplearning4j-examples仓库到本地:
git clone https://github.com/deeplearning4j/deeplearning4j-examples.git
cd deeplearning4j-examples
2.3 构建项目
使用Maven构建项目:
mvn clean install
2.4 运行示例
以dl4j-examples项目中的一个简单示例为例,运行MNIST数据集的训练:
cd dl4j-examples
mvn exec:java -Dexec.mainClass="org.deeplearning4j.examples.quickstart.modeling.feedforward.classification.MLPClassifierMNIST"
3. 应用案例和最佳实践
3.1 图像分类
DL4J提供了丰富的图像分类示例,如使用卷积神经网络(CNN)对MNIST手写数字数据集进行分类。这些示例展示了如何加载数据、构建模型、训练模型以及评估模型性能。
3.2 分布式训练
DL4J支持在Apache Spark上进行分布式训练。dl4j-distributed-training-examples项目中的示例展示了如何使用DL4J在Spark集群上进行分布式训练,适用于大规模数据集和复杂模型的训练。
3.3 模型导入
DL4J支持从Keras和TensorFlow导入模型。tensorflow-keras-import-examples项目中的示例展示了如何将预训练的Keras或TensorFlow模型导入DL4J,并继续进行训练或推理。
4. 典型生态项目
4.1 ND4J
ND4J是一个通用的线性代数库,提供了超过500种数学和深度学习操作。它是DL4J的基础,支持CPU和GPU加速。
4.2 SameDiff
SameDiff是ND4J的一部分,是一个自动微分框架。它支持图模式(类似于TensorFlow的图模式),并计划支持eager模式(类似于TensorFlow 2.x和PyTorch)。
4.3 DataVec
DataVec是一个数据ETL工具,支持从多种格式和文件(如HDFS、Spark、图像、视频、音频、CSV、Excel等)加载和预处理数据。
4.4 RL4J
RL4J是DL4J的强化学习库,提供了多种强化学习算法的实现,如Q-Learning和A3C。
通过这些生态项目,DL4J为开发者提供了一个完整的深度学习解决方案,从数据处理到模型训练再到推理,覆盖了深度学习的各个环节。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00