MoCo v3 项目使用教程
2026-01-23 04:51:37作者:曹令琨Iris
1. 项目目录结构及介绍
MoCo v3 项目的目录结构如下:
moco-v3/
├── CODE_OF_CONDUCT.md
├── CONFIG.md
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── convert_to_deit.py
├── main_lincls.py
├── main_moco.py
├── vits.py
└── transfer/
└── ...
目录结构介绍
- CODE_OF_CONDUCT.md: 项目的行为准则文件。
- CONFIG.md: 项目配置文件的说明文档。
- CONTRIBUTING.md: 项目贡献指南。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- convert_to_deit.py: 用于将预训练的 ViT 模型转换为 DEiT 格式的脚本。
- main_lincls.py: 用于线性分类的启动文件。
- main_moco.py: 用于 MoCo v3 自监督预训练的启动文件。
- vits.py: 与 ViT 模型相关的脚本。
- transfer/: 包含迁移学习相关文件的目录。
2. 项目启动文件介绍
main_moco.py
main_moco.py 是 MoCo v3 自监督预训练的主要启动文件。它支持 ResNet 和 ViT 模型的预训练。以下是一些关键参数:
--moco-m-cos: 使用余弦调度器。--crop-min=0.2: 设置最小裁剪比例。--dist-url: 分布式训练的 URL。--multiprocessing-distributed: 启用多进程分布式训练。--world-size: 设置分布式训练的节点数。--rank: 设置当前节点的排名。
main_lincls.py
main_lincls.py 用于线性分类任务。它可以在冻结特征的情况下进行线性分类。以下是一些关键参数:
-a [architecture]: 指定使用的模型架构。--lr [learning rate]: 设置学习率。--dist-url: 分布式训练的 URL。--multiprocessing-distributed: 启用多进程分布式训练。--world-size: 设置分布式训练的节点数。--rank: 设置当前节点的排名。--pretrained: 指定预训练模型的路径。
3. 项目配置文件介绍
CONFIG.md
CONFIG.md 文件包含了项目的配置说明和推荐的超参数设置。它提供了不同模型架构(如 ResNet-50 和 ViT)的配置示例,包括预训练的轮数、裁剪比例、线性分类的准确率等信息。
配置示例
以下是 CONFIG.md 中的一些配置示例:
-
ResNet-50:
- 预训练轮数: 100, 300, 1000
- 裁剪比例: 2x224
- 线性分类准确率: 68.9%, 72.8%, 74.6%
-
ViT-Small:
- 预训练轮数: 300
- 裁剪比例: 2x224
- 线性分类准确率: 73.2%
-
ViT-Base:
- 预训练轮数: 300
- 裁剪比例: 2x224
- 线性分类准确率: 76.7%
通过这些配置文件,用户可以根据自己的需求调整模型的训练参数,以达到最佳的训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882